Stochastic reaction-diffusion modelling

Introduction

There is a fairly large literature on reaction-diffusion modelling using partial differential equations (PDEs). There is also a fairly large literature on stochastic modelling of coupled chemical reactions, which account for the discreteness of reacting species at low concentrations. There is some literature on combining the two, to form stochastic reaction-diffusion systems, but much less.

In this post we will look at one approach to the stochastic reaction-diffusion problem, based on an underlying stochastic process often described by the reaction diffusion master equation (RDME). We will start by generating exact realisations from this process using the spatial Gillespie algorithm, before switching to a continuous stochastic approximation often known as the spatial chemical Langevin equation (spatial CLE). For fine discretisations, this spatial CLE is just an explicit numerical scheme for an associated reaction-diffusion stochastic partial differential equation (SPDE), and we can easily contrast such SPDE dynamics with their deterministic PDE approximation. We will investigate using simulation, based on my Scala library, scala-smfsb, which accompanies the third edition of my textbook, Stochastic modelling for systems biology, as discussed in previous posts.

All of the code used to generate the plots and movies in this post is available in my blog repo, and is very simple to build and run.

The Lotka-Volterra reaction network

Exact simulation from the RDME

My favourite toy coupled chemical reaction network is the Lotka-Volterra predator-prey system, presented as the three reactions

X \longrightarrow 2X
X + Y \longrightarrow 2Y
Y \longrightarrow \emptyset

with X representing the prey species and Y the predator. I showed how to simulate realisations from this process using the Scala library in the previous post. Here we will consider simulation of this model in 2d, and simulate exact realisation from the appropriate RDME using the spatial Gillespie algorithm. Full runnable code for this simulation is here, but the key lines are:

val r = 100; val c = 120
val model = SpnModels.lv[IntState]()
val step = Spatial.gillespie2d(model, DenseVector(0.6, 0.6), maxH=1e12)
val x00 = DenseVector(0, 0)
val x0 = DenseVector(50, 100)
val xx00 = PMatrix(r, c, Vector.fill(r*c)(x00))
val xx0 = xx00.updated(c/2, r/2, x0)
val s = Stream.iterate(xx0)(step(_,0.0,0.1))

which sets up an infinite lazy Stream of states on a 100×120 grid over time steps of 0.1 units with diffusion rates of 0.6 for both species. We can then map this to a stream of images and visualise it using my scala-view library (described in this post). Running gives the following output:

Movie

The above image is the final frame of a movie which can be viewed by clicking on the image. In the simulation, blue represents the prey species, X, and red represents the predator, Y. The simulation is initialised with a few prey and predators in the central pixel. At each time step of the simulation, either a reaction or a diffusion event may occur. If diffusion occurs, an individual moves from its current location to one of the four adjacent pixels. This algorithm is extremely computationally intensive, however well it is implemented. The implementation used here (using the function Spatial.gillespie2d in the scala-smfsb library) is quite inefficient. A more efficient implementation would use the next subvolume method or similar algorithm. But since every reaction event is simulated sequentially, this algorithm is always going to be intolerably slow for most interesting problems.

The spatial CLE

The spatial CLE effectively approximates the true RDME dynamics with a set of coupled stochastic differential equations (SDEs) on the spatial grid. This can be interpreted as an explicit scheme for numerically integrating an SPDE. But this numerical scheme is much more efficient, allowing sensible time-stepping of the process, and vectorises and parallelises nicely. The details are in my book, but the Scala implementation is here. Diffusion is implemented efficiently and in parallel using the comonadic approach that I’ve described previously. We can quickly and easily generate large simulations using the spatial CLE. Here is a movie generated on a 250×300 grid.

Movie

Again, clicking on the frame should give the movie. We see that although the quantitative details are slightly different to the exact algorithm, the essential qualitative behaviour of the system is captured well by the spatial CLE. Full code for this simulation is here.

Reaction-diffusion PDE

If we remove all of the noise terms from the spatial CLE, we get a set of coupled ODEs, which again, may be interpreted as a numerical scheme for integrating a reaction-diffusion PDE model. Below are the dynamics on the same 250×300 grid.

Movie

It seems a bit harsh to describe a reaction-diffusion PDE as “boring”, but it certainly isn’t as interesting as the stochastic dynamics. Also, it has qualitatively quite different behaviour to the stochastic models, with wavefronts being less pronounced and less well separated. The code for this one is here.

Other initialisations

Instead of just seeding the simulation with some individuals in the central pixel, we can initialise 3 pixels. We can look first at a spatial CLE simulation.

Movie

Code here.

We can look at the same problem, but now using a PDE.

Movie

Code here.

Alternatively, we can initialise every pixel independently with random numbers of predator and prey. A movie for this is given below, following a short warm-up.

Movie

Code here.

Again, we can look at the corresponding deterministic integration.

Movie

Code here.

The SIR model

Let’s now turn attention to a spatial epidemic process model, the spatial susceptible-infectious-recovered model. Again, we’ll start from the discrete reaction formulation.

S + I \longrightarrow 2I
I \longrightarrow R

I’ll add this model to the next release of scala-smfsb, but in the meantime we can easily define it ourselves with:

def sir[S: State](p: DenseVector[Double] = DenseVector(0.1, 0.5)): Spn[S] =
  UnmarkedSpn[S](
    List("S", "I", "R"),
    DenseMatrix((1, 1, 0), (0, 1, 0)),
    DenseMatrix((0, 2, 0), (0, 0, 1)),
    (x, t) => {
      val xd = x.toDvd
      DenseVector(
        xd(0) * xd(1) * p(0), xd(1) * p(1)
      )}
  )

We can seed a simulation with a few infectious individuals in the centre of a roughly homogeneous population of susceptibles.

Spatial CLE

This time we’ll skip the exact simulation, since it’s very slow, and go straight to the spatial CLE. A simulation on a 250×300 grid is given below.

Movie

Here, green represents S, red I and blue R. In this simulation, I diffuses more slowly than S, and R doesn’t diffuse at all.
Code here.

PDE model

If we ditch the noise to get a reaction-diffusion PDE model, the dynamics are as follows.

Movie

Again, we see that the deterministic model is quite different to the stochastic version, and kind-of boring. Code here.

Further information

All of the code used to generate the plots and movies in this post is available in an easily runnable form in my blog repo. It is very easy to adapt the examples to vary parameters and initial conditions, and to study other reaction systems. Further details relating to stochastic reaction-diffusion modelling based on the RDME can be found in Chapter 9 of my textbook, Stochastic modelling for systems biology, third edition.

Stochastic Modelling for Systems Biology, third edition

The third edition of my textbook, Stochastic Modelling for Systems Biology has recently been published by Chapman & Hall/CRC Press. The book has ISBN-10 113854928-2 and ISBN-13 978-113854928-9. It can be ordered from CRC Press, Amazon.com, Amazon.co.uk and similar book sellers.

I was fairly happy with the way that the second edition, published in 2011, turned out, and so I haven’t substantially re-written any of the text for the third edition. Instead, I’ve concentrated on adding in new material and improving the associated on-line resources. Those on-line resources are all free and open source, and hence available to everyone, irrespective of whether you have a copy of the new edition. I’ll give an introduction to those resources below (and in subsequent posts). The new material can be briefly summarised as follows:

  • New chapter on spatially extended systems, covering the spatial Gillespie algorithm for reaction diffusion master equation (RDME) models in 1- and 2-d, the next subvolume method, spatial CLE, scaling issues, etc.
  • Significantly expanded chapter on inference for stochastic kinetic models from data, covering approximate methods of inference (ABC), including ABC-SMC. The material relating to particle MCMC has also been improved and extended.
  • Updated R package, including code relating to all of the new material
  • New R package for parsing SBML models into simulatable stochastic Petri net models
  • New software library, written in Scala, replicating most of the functionality of the R packages in a fast, compiled, strongly typed, functional language

New content

Although some minor edits and improvements have been made throughout the text, there are two substantial new additions to the text in this new edition. The first is an entirely new chapter on spatially extended systems. The first two editions of the text focused on the implications of discreteness and stochasticity in chemical reaction systems, but maintained the well-mixed assumption throughout. This is a reasonable first approach, since discreteness and stochasticity are most pronounced in very small volumes where diffusion should be rapid. In any case, even these non-spatial models have very interesting behaviour, and become computationally challenging very quickly for non-trivial reaction networks. However, we know that, in fact, the cell is a very crowded environment, and so even at small spatial scales, many interesting processes are diffusion limited. It therefore seems appropriate to dedicate one chapter (the new Chapter 9) to studying some of the implications of relaxing the well-mixed assumption. Entire books can be written on stochastic reaction-diffusion systems, so here only a brief introduction is provided, based mainly around models in the reaction-diffusion master equation (RDME) style. Exact stochastic simulation algorithms are discussed, and implementations provided in the 1- and 2-d cases, and an appropriate Langevin approximation is examined, the spatial CLE.

The second major addition is to the chapter on inference for stochastic kinetic models from data (now Chapter 11). The second edition of the book included a discussion of “likelihood free” Bayesian MCMC methods for inference, and provided a working implementation of likelihood free particle marginal Metropolis-Hastings (PMMH) for stochastic kinetic models. The third edition improves on that implementation, and discusses approximate Bayesian computation (ABC) as an alternative to MCMC for likelihood free inference. Implementation issues are discussed, and sequential ABC approaches are examined, concentrating in particular on the method known as ABC-SMC.

New software and on-line resources

Accompanying the text are new and improved on-line resources, all well-documented, free, and open source.

New website/GitHub repo

Information and materials relating to the previous editions were kept on my University website. All materials relating to this new edition are kept in a public GitHub repo: darrenjw/smfsb. This will be simpler to maintain, and will make it much easier for people to make copies of the material for use and studying off-line.

Updated R package(s)

Along with the second edition of the book I released an accompanying R package, “smfsb”, published on CRAN. This was a very popular feature, allowing anyone with R to trivially experiment with all of the models and algorithms discussed in the text. This R package has been updated, and a new version has been published to CRAN. The updates are all backwards-compatible with the version associated with the second edition of the text, so owners of that edition can still upgrade safely. I’ll give a proper introduction to the package, including the new features, in a subsequent post, but in the meantime, you can install/upgrade the package from a running R session with

install.packages("smfsb")

and then pop up a tutorial vignette with:

vignette("smfsb")

This should be enough to get you started.

In addition to the main R package, there is an additional R package for parsing SBML models into models that can be simulated within R. This package is not on CRAN, due to its dependency on a non-CRAN package. See the repo for further details.

There are also Python scripts available for converting SBML models to and from the shorthand SBML notation used in the text.

New Scala library

Another major new resource associated with the third edition of the text is a software library written in the Scala programming language. This library provides Scala implementations of all of the algorithms discussed in the book and implemented in the associated R packages. This then provides example implementations in a fast, efficient, compiled language, and is likely to be most useful for people wanting to use the methods in the book for research. Again, I’ll provide a tutorial introduction to this library in a subsequent post, but it is well-documented, with all necessary information needed to get started available at the scala-smfsb repo/website, including a step-by-step tutorial and some additional examples.