Bayesian hierarchical modelling with Rainier

Introduction

In the previous post I gave a brief introduction to Rainier, a new HMC-based probabilistic programming library/DSL for Scala. In that post I assumed that people were using the latest source version of the library. Since then, version 0.1.1 of the library has been released, so in this post I will demonstrate use of the released version of the software (using the binaries published to Sonatype), and will walk through a slightly more interesting example – a dynamic linear state space model with unknown static parameters. This is similar to, but slightly different from, the DLM example in the Rainier library. So to follow along with this post, all that is required is SBT.

An interactive session

First run SBT from an empty directory, and paste the following at the SBT prompt:

set libraryDependencies  += "com.stripe" %% "rainier-plot" % "0.1.1"
set scalaVersion := "2.12.4"
console

This should give a Scala REPL with appropriate dependencies (rainier-plot has all of the relevant transitive dependencies). We’ll begin with some imports, and then simulating some synthetic data from a dynamic linear state space model with an AR(1) latent state and Gaussian noise on the observations.

import com.stripe.rainier.compute._
import com.stripe.rainier.core._
import com.stripe.rainier.sampler._

implicit val rng = ScalaRNG(1)
val n = 60 // number of observations/time points
val mu = 3.0 // AR(1) mean
val a = 0.95 // auto-regressive parameter
val sig = 0.2 // AR(1) SD
val sigD = 3.0 // observational SD
val state = Stream.
  iterate(0.0)(x => mu + (x - mu) * a + sig * rng.standardNormal).
  take(n).toVector
val obs = state.map(_ + sigD * rng.standardNormal)

Now we have some synthetic data, let’s think about building a probabilistic program for this model. Start with a prior.

case class Static(mu: Real, a: Real, sig: Real, sigD: Real)
val prior = for {
  mu <- Normal(0, 10).param
  a <- Normal(1, 0.1).param
  sig <- Gamma(2,1).param
  sigD <- Gamma(2,2).param
  sp <- Normal(0, 50).param
} yield (Static(mu, a, sig, sigD), List(sp))

Note the use of a case class for wrapping the static parameters. Next, let’s define a function to add a state and associated observation to an existing model.

def addTimePoint(current: RandomVariable[(Static, List[Real])],
                     datum: Double) = for {
  tup <- current
  static = tup._1
  states = tup._2
  os = states.head
  ns <- Normal(((Real.one - static.a) * static.mu) + (static.a * os),
                 static.sig).param
  _ <- Normal(ns, static.sigD).fit(datum)
} yield (static, ns :: states)

Given this, we can generate the probabilistic program for our model as a fold over the data initialised with the prior.

val fullModel = obs.foldLeft(prior)(addTimePoint(_, _))

If we don’t want to keep samples for all of the variables, we can focus on the parameters of interest, wrapping the results in a Map for convenient sampling and plotting.

val model = for {
  tup <- fullModel
  static = tup._1
  states = tup._2
} yield
  Map("mu" -> static.mu,
  "a" -> static.a,
  "sig" -> static.sig,
  "sigD" -> static.sigD,
  "SP" -> states.reverse.head)

We can sample with

val out = model.sample(HMC(3), 100000, 10000 * 500, 500)

(this will take several minutes) and plot some diagnostics with

import com.cibo.evilplot.geometry.Extent
import com.stripe.rainier.plot.EvilTracePlot._

val truth = Map("mu" -> mu, "a" -> a, "sigD" -> sigD,
  "sig" -> sig, "SP" -> state(0))
render(traces(out, truth), "traceplots.png",
  Extent(1200, 1400))
render(pairs(out, truth), "pairs.png")

This generates the following diagnostic plots:

Everything looks good.

Summary

Rainier is a monadic embedded DSL for probabilistic programming in Scala. We can use standard functional combinators and for-expressions for building models to sample, and then run an efficient HMC algorithm on the resulting probability monad in order to obtain samples from the posterior distribution of the model.

See the Rainier repo for further details.

Advertisements

Monadic probabilistic programming in Scala with Rainier

Introduction

Rainier is an interesting new probabilistic programming library for Scala recently open-sourced by Stripe. Probabilistic programming languages provide a computational framework for building and fitting Bayesian models to data. There are many interesting probabilistic programming languages, and there is currently a lot of interesting innovation happening with probabilistic programming languages embedded in strongly typed functional programming languages such as Scala and Haskell. However, most such languages tend to be developed by people lacking expertise in statistics and numerics, leading to elegant, composable languages which work well for toy problems, but don’t scale well to the kinds of practical problems that applied statisticians are interested in. Conversely, there are a few well-known probabilistic programming languages developed by and for statisticians which have efficient inference engines, but are hampered by inflexible, inelegant languages and APIs. Rainier is interesting because it is an attempt to bridge the gap between these two worlds: it has a functional, composable, extensible, monadic API, yet is backed by a very efficient, high-performance scalable inference engine, using HMC and a static compute graph for reverse-mode AD. Clearly there will be some loss of generality associated with choosing an efficient inference algorithm (eg. for HMC, there needs to be a fixed number of parameters and they must all be continuous), but it still covers a large proportion of the class of hierarchical models commonly used in applied statistical modelling.

In this post I’ll give a quick introduction to Rainier using an interactive session requiring only that SBT is installed and the Rainier repo is downloaded or cloned.

Interactive session

To follow along with this post just clone, or download and unpack, the Rainier repo, and run SBT from the top-level Rainier directory and paste commands. First start a Scala REPL.

project rainierPlot
console

Before we start building models, we need some data. For this post we will focus on a simple logistic regression model, and so we will begin by simulating some synthetic data consistent with such a model.

val r = new scala.util.Random(0)
val N = 1000
val beta0 = 0.1
val beta1 = 0.3
val x = (1 to N) map { i =>
  3.0 * r.nextGaussian
}
val theta = x map { xi =>
  beta0 + beta1 * xi
}
def expit(x: Double): Double = 1.0 / (1.0 + math.exp(-x))
val p = theta map expit
val y = p map (pi => (r.nextDouble < pi))

Now we have some synthetic data, we can fit the model and see if we are able to recover the “true” parameters used to generate the synthetic data. In Rainier, we build models by declaring probabilistic programs for the model and the data, and then run an inference engine to generate samples from the posterior distribution.

Start with a bunch of Rainier imports:

import com.stripe.rainier.compute._
import com.stripe.rainier.core._
import com.stripe.rainier.sampler._
import com.stripe.rainier.repl._

Now we want to build a model. We do so by describing the joint distribution of parameters and data. Rainier has a few built-in distributions, and these can be combined using standard functional monadic combinators such as map, zip, flatMap, etc., to create a probabilistic program representing a probability monad for the model. Due to the monadic nature of such probabilistic programs, it is often most natural to declare them using a for-expression.

val model = for {
  beta0 <- Normal(0, 5).param
  beta1 <- Normal(0, 5).param
  _ <- Predictor.from{x: Double =>
      {
        val theta = beta0 + beta1 * x
        val p = Real(1.0) / (Real(1.0) + (Real(0.0) - theta).exp)
        Categorical.boolean(p)
      }
    }.fit(x zip y)
} yield Map("b0"->beta0, "b1"->beta1)

This kind of construction is very natural for anyone familiar with monadic programming in Scala, but will no doubt be a little mysterious otherwise. RandomVariable is the probability monad used for HMC sampling, and these can be constructed from Distributions using .param (for unobserved parameters) and .fit (for variables with associated observations). Predictor is just a convenience for observations corresponding to covariate information. model is therefore a RandomVariable over beta0 and beta1, the two unobserved parameters of interest. Note that I briefly discussed this kind of pure functional approach to describing probabilistic programs (using Rand from Breeze) in my post on MCMC as a stream.

Now we have our probabilistic program, we can sample from it using HMC as follows.

implicit val rng = ScalaRNG(3)
val its = 10000
val thin = 5
val out = model.sample(HMC(5), 10000, its*thin, thin)
println(out.take(10))

The argument to HMC() is the number of leapfrog steps to take per iteration.

Finally, we can use EvilPlot to look at the HMC output and check that we have managed to reasonably recover the true parameters associated with our synthetic data.

import com.cibo.evilplot.geometry.Extent
import com.stripe.rainier.plot.EvilTracePlot._

render(traces(out, truth = Map("b0" -> beta0, "b1" -> beta1)),
  "traceplots.png", Extent(1200, 1000))
render(pairs(out, truth = Map("b0" -> beta0, "b1" -> beta1)), "pairs.png")

Everything looks good, and the sampling is very fast!

Further reading

For further information, see the Rainier repo. In particular, start with the tour of Rainier’s core, which gives a more detailed introduction to how Rainier works than this post. Those interested in how the efficient AD works may want to read about the compute graph, and the implementation notes explain how it all fits together. There is some basic ScalaDoc for the core package, and also some examples (including this one), and there’s a gitter channel for asking questions. This is a very new project, so there are a few minor bugs and wrinkles in the initial release, but development is progressing rapidly, so I fully expect the library to get properly battle-hardened over the next few months.

For those unfamiliar with the monadic approach to probabilistic programming, then Ścibior et al (2015) is probably a good starting point.

Comonads for scientific and statistical computing in Scala

Introduction

In a previous post I’ve given a brief introduction to monads in Scala, aimed at people interested in scientific and statistical computing. Monads are a concept from category theory which turn out to be exceptionally useful for solving many problems in functional programming. But most categorical concepts have a dual, usually prefixed with “co”, so the dual of a monad is the comonad. Comonads turn out to be especially useful for formulating algorithms from scientific and statistical computing in an elegant way. In this post I’ll illustrate their use in signal processing, image processing, numerical integration of PDEs, and Gibbs sampling (of an Ising model). Comonads enable the extension of a local computation to a global computation, and this pattern crops up all over the place in statistical computing.

Monads and comonads

Simplifying massively, from the viewpoint of a Scala programmer, a monad is a mappable (functor) type class augmented with the methods pure and flatMap:

trait Monad[M[_]] extends Functor[M] {
  def pure[T](v: T): M[T]
  def flatMap[T,S](v: M[T])(f: T => M[S]): M[S]
}

In category theory, the dual of a concept is typically obtained by “reversing the arrows”. Here that means reversing the direction of the methods pure and flatMap to get extract and coflatMap, respectively.

trait Comonad[W[_]] extends Functor[W] {
  def extract[T](v: W[T]): T
  def coflatMap[T,S](v: W[T])(f: W[T] => S): W[S]
}

So, while pure allows you to wrap plain values in a monad, extract allows you to get a value out of a comonad. So you can always get a value out of a comonad (unlike a monad). Similarly, while flatMap allows you to transform a monad using a function returning a monad, coflatMap allows you to transform a comonad using a function which collapses a comonad to a single value. It is coflatMap (sometimes called extend) which can extend a local computation (producing a single value) to the entire comonad. We’ll look at how that works in the context of some familiar examples.

Applying a linear filter to a data stream

One of the simplest examples of a comonad is an infinite stream of data. I’ve discussed streams in a previous post. By focusing on infinite streams we know the stream will never be empty, so there will always be a value that we can extract. Which value does extract give? For a Stream encoded as some kind of lazy list, the only value we actually know is the value at the head of the stream, with subsequent values to be lazily computed as required. So the head of the list is the only reasonable value for extract to return.

Understanding coflatMap is a bit more tricky, but it is coflatMap that provides us with the power to apply a non-trivial statistical computation to the stream. The input is a function which transforms a stream into a value. In our example, that will be a function which computes a weighted average of the first few values and returns that weighted average as the result. But the return type of coflatMap must be a stream of such computations. Following the types, a few minutes thought reveals that the only reasonable thing to do is to return the stream formed by applying the weighted average function to all sub-streams, recursively. So, for a Stream s (of type Stream[T]) and an input function f: W[T] => S, we form a stream whose head is f(s) and whose tail is coflatMap(f) applied to s.tail. Again, since we are working with an infinite stream, we don’t have to worry about whether or not the tail is empty. This gives us our comonadic Stream, and it is exactly what we need for applying a linear filter to the data stream.

In Scala, Cats is a library providing type classes from Category theory, and instances of those type classes for parametrised types in the standard library. In particular, it provides us with comonadic functionality for the standard Scala Stream. Let’s start by defining a stream corresponding to the logistic map.

import cats._
import cats.implicits._

val lam = 3.7
def s = Stream.iterate(0.5)(x => lam*x*(1-x))
s.take(10).toList
// res0: List[Double] = List(0.5, 0.925, 0.25668749999999985,
//  0.7059564011718747, 0.7680532550204203, 0.6591455741499428, ...

Let us now suppose that we want to apply a linear filter to this stream, in order to smooth the values. The idea behind using comonads is that you figure out how to generate one desired value, and let coflatMap take care of applying the same logic to the rest of the structure. So here, we need a function to generate the first filtered value (since extract is focused on the head of the stream). A simple first attempt a function to do this might look like the following.

  def linearFilterS(weights: Stream[Double])(s: Stream[Double]): Double =
    (weights, s).parMapN(_*_).sum

This aligns each weight in parallel with a corresponding value from the stream, and combines them using multiplication. The resulting (hopefully finite length) stream is then summed (with addition). We can test this with

linearFilterS(Stream(0.25,0.5,0.25))(s)
// res1: Double = 0.651671875

and let coflatMap extend this computation to the rest of the stream with something like:

s.coflatMap(linearFilterS(Stream(0.25,0.5,0.25))).take(5).toList
// res2: List[Double] = List(0.651671875, 0.5360828502929686, ...

This is all completely fine, but our linearFilterS function is specific to the Stream comonad, despite the fact that all we’ve used about it in the function is that it is a parallelly composable and foldable. We can make this much more generic as follows:

  def linearFilter[F[_]: Foldable, G[_]](
    weights: F[Double], s: F[Double]
  )(implicit ev: NonEmptyParallel[F, G]): Double =
    (weights, s).parMapN(_*_).fold

This uses some fairly advanced Scala concepts which I don’t want to get into right now (I should also acknowledge that I had trouble getting the syntax right for this, and got help from Fabio Labella (@SystemFw) on the Cats gitter channel). But this version is more generic, and can be used to linearly filter other data structures than Stream. We can use this for regular Streams as follows:

s.coflatMap(s => linearFilter(Stream(0.25,0.5,0.25),s))
// res3: scala.collection.immutable.Stream[Double] = Stream(0.651671875, ?)

But we can apply this new filter to other collections. This could be other, more sophisticated, streams such as provided by FS2, Monix or Akka streams. But it could also be a non-stream collection, such as List:

val sl = s.take(10).toList
sl.coflatMap(sl => linearFilter(List(0.25,0.5,0.25),sl))
// res4: List[Double] = List(0.651671875, 0.5360828502929686, ...

Assuming that we have the Breeze scientific library available, we can plot the raw and smoothed trajectories.

def myFilter(s: Stream[Double]): Double =
  linearFilter(Stream(0.25, 0.5, 0.25),s)
val n = 500
import breeze.plot._
import breeze.linalg._
val fig = Figure(s"The (smoothed) logistic map (lambda=$lam)")
val p0 = fig.subplot(3,1,0)
p0 += plot(linspace(1,n,n),s.take(n))
p0.ylim = (0.0,1.0)
p0.title = s"The logistic map (lambda=$lam)"
val p1 = fig.subplot(3,1,1)
p1 += plot(linspace(1,n,n),s.coflatMap(myFilter).take(n))
p1.ylim = (0.0,1.0)
p1.title = "Smoothed by a simple linear filter"
val p2 = fig.subplot(3,1,2)
p2 += plot(linspace(1,n,n),s.coflatMap(myFilter).coflatMap(myFilter).coflatMap(myFilter).coflatMap(myFilter).coflatMap(myFilter).take(n))
p2.ylim = (0.0,1.0)
p2.title = "Smoothed with 5 applications of the linear filter"
fig.refresh

Image processing and the heat equation

Streaming data is in no way the only context in which a comonadic approach facilitates an elegant approach to scientific and statistical computing. Comonads crop up anywhere where we want to extend a computation that is local to a small part of a data structure to the full data structure. Another commonly cited area of application of comonadic approaches is image processing (I should acknowledge that this section of the post is very much influenced by a blog post on comonadic image processing in Haskell). However, the kinds of operations used in image processing are in many cases very similar to the operations used in finite difference approaches to numerical integration of partial differential equations (PDEs) such as the heat equation, so in this section I will blur (sic) the distinction between the two, and numerically integrate the 2D heat equation in order to Gaussian blur a noisy image.

First we need a simple image type which can have pixels of arbitrary type T (this is very important – all functors must be fully type polymorphic).

  import scala.collection.parallel.immutable.ParVector
  case class Image[T](w: Int, h: Int, data: ParVector[T]) {
    def apply(x: Int, y: Int): T = data(x*h+y)
    def map[S](f: T => S): Image[S] = Image(w, h, data map f)
    def updated(x: Int, y: Int, value: T): Image[T] =
      Image(w,h,data.updated(x*h+y,value))
  }

Here I’ve chosen to back the image with a parallel immutable vector. This wasn’t necessary, but since this type has a map operation which automatically parallelises over multiple cores, any map operations applied to the image will be automatically parallelised. This will ultimately lead to all of our statistical computations being automatically parallelised without us having to think about it.

As it stands, this image isn’t comonadic, since it doesn’t implement extract or coflatMap. Unlike the case of Stream, there isn’t really a uniquely privileged pixel, so it’s not clear what extract should return. For many data structures of this type, we make them comonadic by adding a “cursor” pointing to a “current” element of interest, and use this as the focus for computations applied with coflatMap. This is simplest to explain by example. We can define our “pointed” image type as follows:

  case class PImage[T](x: Int, y: Int, image: Image[T]) {
    def extract: T = image(x, y)
    def map[S](f: T => S): PImage[S] = PImage(x, y, image map f)
    def coflatMap[S](f: PImage[T] => S): PImage[S] = PImage(
      x, y, Image(image.w, image.h,
      (0 until (image.w * image.h)).toVector.par.map(i => {
        val xx = i / image.h
        val yy = i % image.h
        f(PImage(xx, yy, image))
      })))

There is missing a closing brace, as I’m not quite finished. Here x and y represent the location of our cursor, so extract returns the value of the pixel indexed by our cursor. Similarly, coflatMap forms an image where the value of the image at each location is the result of applying the function f to the image which had the cursor set to that location. Clearly f should use the cursor in some way, otherwise the image will have the same value at every pixel location. Note that map and coflatMap operations will be automatically parallelised. The intuitive idea behind coflatMap is that it extends local computations. For the stream example, the local computation was a linear combination of nearby values. Similarly, in image analysis problems, we often want to apply a linear filter to nearby pixels. We can get at the pixel at the cursor location using extract, but we probably also want to be able to move the cursor around to nearby locations. We can do that by adding some appropriate methods to complete the class definition.

    def up: PImage[T] = {
      val py = y-1
      val ny = if (py >= 0) py else (py + image.h)
      PImage(x,ny,image)
    }
    def down: PImage[T] = {
      val py = y+1
      val ny = if (py < image.h) py else (py - image.h)
      PImage(x,ny,image)
    }
    def left: PImage[T] = {
      val px = x-1
      val nx = if (px >= 0) px else (px + image.w)
      PImage(nx,y,image)
    }
    def right: PImage[T] = {
      val px = x+1
      val nx = if (px < image.w) px else (px - image.w)
      PImage(nx,y,image)
    }
  }

Here each method returns a new pointed image with the cursor shifted by one pixel in the appropriate direction. Note that I’ve used periodic boundary conditions here, which often makes sense for numerical integration of PDEs, but makes less sense for real image analysis problems. Note that we have embedded all “indexing” issues inside the definition of our classes. Now that we have it, none of the statistical algorithms that we develop will involve any explicit indexing. This makes it much less likely to develop algorithms containing bugs corresponding to “off-by-one” or flipped axis errors.

This class is now fine for our requirements. But if we wanted Cats to understand that this structure is really a comonad (perhaps because we wanted to use derived methods, such as coflatten), we would need to provide evidence for this. The details aren’t especially important for this post, but we can do it simply as follows:

  implicit val pimageComonad = new Comonad[PImage] {
    def extract[A](wa: PImage[A]) = wa.extract
    def coflatMap[A,B](wa: PImage[A])(f: PImage[A] => B): PImage[B] =
      wa.coflatMap(f)
    def map[A,B](wa: PImage[A])(f: A => B): PImage[B] = wa.map(f)
  }

It’s handy to have some functions for converting Breeze dense matrices back and forth with our image class.

  import breeze.linalg.{Vector => BVec, _}
  def BDM2I[T](m: DenseMatrix[T]): Image[T] =
    Image(m.cols, m.rows, m.data.toVector.par)
  def I2BDM(im: Image[Double]): DenseMatrix[Double] =
    new DenseMatrix(im.h,im.w,im.data.toArray)

Now we are ready to see how to use this in practice. Let’s start by defining a very simple linear filter.

def fil(pi: PImage[Double]): Double = (2*pi.extract+
  pi.up.extract+pi.down.extract+pi.left.extract+pi.right.extract)/6.0

This simple filter can be used to “smooth” or “blur” an image. However, from a more sophisticated viewpoint, exactly this type of filter can be used to represent one time step of a numerical method for time integration of the 2D heat equation. Now we can simulate a noisy image and apply our filter to it using coflatMap:

import breeze.stats.distributions.Gaussian
val bdm = DenseMatrix.tabulate(200,250){case (i,j) => math.cos(
  0.1*math.sqrt((i*i+j*j))) + Gaussian(0.0,2.0).draw}
val pim0 = PImage(0,0,BDM2I(bdm))
def pims = Stream.iterate(pim0)(_.coflatMap(fil))

Note that here, rather than just applying the filter once, I’ve generated an infinite stream of pointed images, each one representing an additional application of the linear filter. Thus the sequence represents the time solution of the heat equation with initial condition corresponding to our simulated noisy image.

We can render the first few frames to check that it seems to be working.

import breeze.plot._
val fig = Figure("Diffusing a noisy image")
pims.take(25).zipWithIndex.foreach{case (pim,i) => {
  val p = fig.subplot(5,5,i)
  p += image(I2BDM(pim.image))
}}

Note that the numerical integration is carried out in parallel on all available cores automatically. Other image filters can be applied, and other (parabolic) PDEs can be numerically integrated in an essentially similar way.

Gibbs sampling the Ising model

Another place where the concept of extending a local computation to a global computation crops up is in the context of Gibbs sampling a high-dimensional probability distribution by cycling through the sampling of each variable in turn from its full-conditional distribution. I’ll illustrate this here using the Ising model, so that I can reuse the pointed image class from above, but the principles apply to any Gibbs sampling problem. In particular, the Ising model that we consider has a conditional independence structure corresponding to a graph of a square lattice. As above, we will use the comonadic structure of the square lattice to construct a Gibbs sampler. However, we can construct a Gibbs sampler for arbitrary graphical models in an essentially identical way by using a graph comonad.

Let’s begin by simulating a random image containing +/-1s:

import breeze.stats.distributions.{Binomial,Bernoulli}
val beta = 0.4
val bdm = DenseMatrix.tabulate(500,600){
  case (i,j) => (new Binomial(1,0.2)).draw
}.map(_*2 - 1) // random matrix of +/-1s
val pim0 = PImage(0,0,BDM2I(bdm))

We can use this to initialise our Gibbs sampler. We now need a Gibbs kernel representing the update of each pixel.

def gibbsKernel(pi: PImage[Int]): Int = {
   val sum = pi.up.extract+pi.down.extract+pi.left.extract+pi.right.extract
   val p1 = math.exp(beta*sum)
   val p2 = math.exp(-beta*sum)
   val probplus = p1/(p1+p2)
   if (new Bernoulli(probplus).draw) 1 else -1
}

So far so good, but there a couple of issues that we need to consider before we plough ahead and start coflatMapping. The first is that pure functional programmers will object to the fact that this function is not pure. It is a stochastic function which has the side-effect of mutating the random number state. I’m just going to duck that issue here, as I’ve previously discussed how to fix it using probability monads, and I don’t want it to distract us here.

However, there is a more fundamental problem here relating to parallel versus sequential application of Gibbs kernels. coflatMap is conceptually parallel (irrespective of how it is implemented) in that all computations used to build the new comonad are based solely on the information available in the starting comonad. OTOH, detailed balance of the Markov chain will only be preserved if the kernels for each pixel are applied sequentially. So if we coflatMap this kernel over the image we will break detailed balance. I should emphasise that this has nothing to do with the fact that I’ve implemented the pointed image using a parallel vector. Exactly the same issue would arise if we switched to backing the image with a regular (sequential) immutable Vector.

The trick here is to recognise that if we coloured alternate pixels black and white using a chequerboard pattern, then all of the black pixels are conditionally independent given the white pixels and vice-versa. Conditionally independent pixels can be updated by parallel application of a Gibbs kernel. So we just need separate kernels for updating odd and even pixels.

def oddKernel(pi: PImage[Int]): Int =
  if ((pi.x+pi.y) % 2 != 0) pi.extract else gibbsKernel(pi)
def evenKernel(pi: PImage[Int]): Int =
  if ((pi.x+pi.y) % 2 == 0) pi.extract else gibbsKernel(pi)

Each of these kernels can be coflatMapped over the image preserving detailed balance of the chain. So we can now construct an infinite stream of MCMC iterations as follows.

def pims = Stream.iterate(pim0)(_.coflatMap(oddKernel).
  coflatMap(evenKernel))

We can animate the first few iterations with:

import breeze.plot._
val fig = Figure("Ising model Gibbs sampler")
fig.width = 1000
fig.height = 800
pims.take(50).zipWithIndex.foreach{case (pim,i) => {
  print(s"$i ")
  fig.clear
  val p = fig.subplot(1,1,0)
  p.title = s"Ising model: frame $i"
  p += image(I2BDM(pim.image.map{_.toDouble}))
  fig.refresh
}}
println

Here I have a movie showing the first 1000 iterations. Note that youtube seems to have over-compressed it, but you should get the basic idea.

Again, note that this MCMC sampler runs in parallel on all available cores, automatically. This issue of odd/even pixel updating emphasises another issue that crops up a lot in functional programming: very often, thinking about how to express an algorithm functionally leads to an algorithm which parallelises naturally. For general graphs, figuring out which groups of nodes can be updated in parallel is essentially the graph colouring problem. I’ve discussed this previously in relation to parallel MCMC in:

Wilkinson, D. J. (2005) Parallel Bayesian Computation, Chapter 16 in E. J. Kontoghiorghes (ed.) Handbook of Parallel Computing and Statistics, Marcel Dekker/CRC Press, 481-512.

Further reading

There are quite a few blog posts discussing comonads in the context of Haskell. In particular, the post on comonads for image analysis I mentioned previously, and this one on cellular automata. Bartosz’s post on comonads gives some connection back to the mathematical origins. Runar’s Scala comonad tutorial is the best source I know for comonads in Scala.

Full runnable code corresponding to this blog post is available from my blog repo.

Statistical computing with Scala free on-line course

I’ve recently delivered a three-day intensive short-course on Scala for statistical computing and data science. The course seemed to go well, and the experience has convinced me that Scala should be used a lot more by statisticians and data scientists for a range of problems in statistical computing. In particular, the simplicity of writing fast efficient parallel algorithms is reason alone to take a careful look at Scala. With a view to helping more statisticians get to grips with Scala, I’ve decided to freely release all of the essential materials associated with the course: the course notes (as PDF), code fragments, complete examples, end-of-chapter exercises, etc. Although I developed the materials with the training course in mind, the course notes are reasonably self-contained, making the course quite suitable for self-study. At some point I will probably flesh out the notes into a proper book, but that will probably take me a little while.

I’ve written a brief self-study guide to point people in the right direction. For people studying the material in their spare time, the course is probably best done over nine weeks (one chapter per week), and this will then cover material at a similar rate to a typical MOOC.

The nine chapters are:

1. Introduction
2. Scala and FP Basics
3. Collections
4. Scala Breeze
5. Monte Carlo
6. Statistical modelling
7. Tools
8. Apache Spark
9. Advanced topics

For anyone frustrated by the limitations of dynamic languages such as R, Python or Octave, this course should provide a good pathway to an altogether more sophisticated, modern programming paradigm.

MCMC as a Stream

Introduction

This weekend I’ve been preparing some material for my upcoming Scala for statistical computing short course. As part of the course, I thought it would be useful to walk through how to think about and structure MCMC codes, and in particular, how to think about MCMC algorithms as infinite streams of state. This material is reasonably stand-alone, so it seems suitable for a blog post. Complete runnable code for the examples in this post are available from my blog repo.

A simple MH sampler

For this post I will just consider a trivial toy Metropolis algorithm using a Uniform random walk proposal to target a standard normal distribution. I’ve considered this problem before on my blog, so if you aren’t very familiar with Metropolis-Hastings algorithms, you might want to quickly review my post on Metropolis-Hastings MCMC algorithms in R before continuing. At the end of that post, I gave the following R code for the Metropolis sampler:

metrop3<-function(n=1000,eps=0.5) 
{
        vec=vector("numeric", n)
        x=0
        oldll=dnorm(x,log=TRUE)
        vec[1]=x
        for (i in 2:n) {
                can=x+runif(1,-eps,eps)
                loglik=dnorm(can,log=TRUE)
                loga=loglik-oldll
                if (log(runif(1)) < loga) { 
                        x=can
                        oldll=loglik
                        }
                vec[i]=x
        }
        vec
}

I will begin this post with a fairly direct translation of this algorithm into Scala:

def metrop1(n: Int = 1000, eps: Double = 0.5): DenseVector[Double] = {
    val vec = DenseVector.fill(n)(0.0)
    var x = 0.0
    var oldll = Gaussian(0.0, 1.0).logPdf(x)
    vec(0) = x
    (1 until n).foreach { i =>
      val can = x + Uniform(-eps, eps).draw
      val loglik = Gaussian(0.0, 1.0).logPdf(can)
      val loga = loglik - oldll
      if (math.log(Uniform(0.0, 1.0).draw) < loga) {
        x = can
        oldll = loglik
      }
      vec(i) = x
    }
    vec
}

This code works, and is reasonably fast and efficient, but there are several issues with it from a functional programmers perspective. One issue is that we have committed to storing all MCMC output in RAM in a DenseVector. This probably isn’t an issue here, but for some big problems we might prefer to not store the full set of states, but to just print the states to (say) the console, for possible re-direction to a file. It is easy enough to modify the code to do this:

def metrop2(n: Int = 1000, eps: Double = 0.5): Unit = {
    var x = 0.0
    var oldll = Gaussian(0.0, 1.0).logPdf(x)
    (1 to n).foreach { i =>
      val can = x + Uniform(-eps, eps).draw
      val loglik = Gaussian(0.0, 1.0).logPdf(can)
      val loga = loglik - oldll
      if (math.log(Uniform(0.0, 1.0).draw) < loga) {
        x = can
        oldll = loglik
      }
      println(x)
    }
}

But now we have two version of the algorithm. One for storing results locally, and one for streaming results to the console. This is clearly unsatisfactory, but we shall return to this issue shortly. Another issue that will jump out at functional programmers is the reliance on mutable variables for storing the state and old likelihood. Let’s fix that now by re-writing the algorithm as a tail-recursion.

@tailrec
def metrop3(n: Int = 1000, eps: Double = 0.5, x: Double = 0.0, oldll: Double = Double.MinValue): Unit = {
    if (n > 0) {
      println(x)
      val can = x + Uniform(-eps, eps).draw
      val loglik = Gaussian(0.0, 1.0).logPdf(can)
      val loga = loglik - oldll
      if (math.log(Uniform(0.0, 1.0).draw) < loga)
        metrop3(n - 1, eps, can, loglik)
      else
        metrop3(n - 1, eps, x, oldll)
    }
  }

This has eliminated the vars, and is just as fast and efficient as the previous version of the code. Note that the @tailrec annotation is optional – it just signals to the compiler that we want it to throw an error if for some reason it cannot eliminate the tail call. However, this is for the print-to-console version of the code. What if we actually want to keep the iterations in RAM for subsequent analysis? We can keep the values in an accumulator, as follows.

@tailrec
def metrop4(n: Int = 1000, eps: Double = 0.5, x: Double = 0.0, oldll: Double = Double.MinValue, acc: List[Double] = Nil): DenseVector[Double] = {
    if (n == 0)
      DenseVector(acc.reverse.toArray)
    else {
      val can = x + Uniform(-eps, eps).draw
      val loglik = Gaussian(0.0, 1.0).logPdf(can)
      val loga = loglik - oldll
      if (math.log(Uniform(0.0, 1.0).draw) < loga)
        metrop4(n - 1, eps, can, loglik, can :: acc)
      else
        metrop4(n - 1, eps, x, oldll, x :: acc)
    }
}

Factoring out the updating logic

This is all fine, but we haven’t yet addressed the issue of having different versions of the code depending on what we want to do with the output. The problem is that we have tied up the logic of advancing the Markov chain with what to do with the output. What we need to do is separate out the code for advancing the state. We can do this by defining a new function.

def newState(x: Double, oldll: Double, eps: Double): (Double, Double) = {
    val can = x + Uniform(-eps, eps).draw
    val loglik = Gaussian(0.0, 1.0).logPdf(can)
    val loga = loglik - oldll
    if (math.log(Uniform(0.0, 1.0).draw) < loga) (can, loglik) else (x, oldll)
}

This function takes as input a current state and associated log likelihood and returns a new state and log likelihood following the execution of one step of a MH algorithm. This separates the concern of state updating from the rest of the code. So now if we want to write code that prints the state, we can write it as

  @tailrec
  def metrop5(n: Int = 1000, eps: Double = 0.5, x: Double = 0.0, oldll: Double = Double.MinValue): Unit = {
    if (n > 0) {
      println(x)
      val ns = newState(x, oldll, eps)
      metrop5(n - 1, eps, ns._1, ns._2)
    }
  }

and if we want to accumulate the set of states visited, we can write that as

  @tailrec
  def metrop6(n: Int = 1000, eps: Double = 0.5, x: Double = 0.0, oldll: Double = Double.MinValue, acc: List[Double] = Nil): DenseVector[Double] = {
    if (n == 0) DenseVector(acc.reverse.toArray) else {
      val ns = newState(x, oldll, eps)
      metrop6(n - 1, eps, ns._1, ns._2, ns._1 :: acc)
    }
  }

Both of these functions call newState to do the real work, and concentrate on what to do with the sequence of states. However, both of these functions repeat the logic of how to iterate over the sequence of states.

MCMC as a stream

Ideally we would like to abstract out the details of how to do state iteration from the code as well. Most functional languages have some concept of a Stream, which represents a (potentially infinite) sequence of states. The Stream can embody the logic of how to perform state iteration, allowing us to abstract that away from our code, as well.

To do this, we will restructure our code slightly so that it more clearly maps old state to new state.

def nextState(eps: Double)(state: (Double, Double)): (Double, Double) = {
    val x = state._1
    val oldll = state._2
    val can = x + Uniform(-eps, eps).draw
    val loglik = Gaussian(0.0, 1.0).logPdf(can)
    val loga = loglik - oldll
    if (math.log(Uniform(0.0, 1.0).draw) < loga) (can, loglik) else (x, oldll)
}

The "real" state of the chain is just x, but if we want to avoid recalculation of the old likelihood, then we need to make this part of the chain’s state. We can use this nextState function in order to construct a Stream.

  def metrop7(eps: Double = 0.5, x: Double = 0.0, oldll: Double = Double.MinValue): Stream[Double] =
    Stream.iterate((x, oldll))(nextState(eps)) map (_._1)

The result of calling this is an infinite stream of states. Obviously it isn’t computed – that would require infinite computation, but it captures the logic of iteration and computation in a Stream, that can be thought of as a lazy List. We can get values out by converting the Stream to a regular collection, being careful to truncate the Stream to one of finite length beforehand! eg. metrop7().drop(1000).take(10000).toArray will do a burn-in of 1,000 iterations followed by a main monitoring run of length 10,000, capturing the results in an Array. Note that metrop7().drop(1000).take(10000) is a Stream, and so nothing is actually computed until the toArray is encountered. Conversely, if printing to console is required, just replace the .toArray with .foreach(println).

The above stream-based approach to MCMC iteration is clean and elegant, and deals nicely with issues like burn-in and thinning (which can be handled similarly). This is how I typically write MCMC codes these days. However, functional programming purists would still have issues with this approach, as it isn’t quite pure functional. The problem is that the code isn’t pure – it has a side-effect, which is to mutate the state of the under-pinning pseudo-random number generator. If the code was pure, calling nextState with the same inputs would always give the same result. Clearly this isn’t the case here, as we have specifically designed the function to be stochastic, returning a randomly sampled value from the desired probability distribution. So nextState represents a function for randomly sampling from a conditional probability distribution.

A pure functional approach

Now, ultimately all code has side-effects, or there would be no point in running it! But in functional programming the desire is to make as much of the code as possible pure, and to push side-effects to the very edges of the code. So it’s fine to have side-effects in your main method, but not buried deep in your code. Here the side-effect is at the very heart of the code, which is why it is potentially an issue.

To keep things as simple as possible, at this point we will stop worrying about carrying forward the old likelihood, and hard-code a value of eps. Generalisation is straightforward. We can make our code pure by instead defining a function which represents the conditional probability distribution itself. For this we use a probability monad, which in Breeze is called Rand. We can couple together such functions using monadic binds (flatMap in Scala), expressed most neatly using for-comprehensions. So we can write our transition kernel as

def kernel(x: Double): Rand[Double] = for {
    innov <- Uniform(-0.5, 0.5)
    can = x + innov
    oldll = Gaussian(0.0, 1.0).logPdf(x)
    loglik = Gaussian(0.0, 1.0).logPdf(can)
    loga = loglik - oldll
    u <- Uniform(0.0, 1.0)
} yield if (math.log(u) < loga) can else x

This is now pure – the same input x will always return the same probability distribution – the conditional distribution of the next state given the current state. We can draw random samples from this distribution if we must, but it’s probably better to work as long as possible with pure functions. So next we need to encapsulate the iteration logic. Breeze has a MarkovChain object which can take kernels of this form and return a stochastic Process object representing the iteration logic, as follows.

MarkovChain(0.0)(kernel).
  steps.
  drop(1000).
  take(10000).
  foreach(println)

The steps method contains the logic of how to advance the state of the chain. But again note that no computation actually takes place until the foreach method is encountered – this is when the sampling occurs and the side-effects happen.

Metropolis-Hastings is a common use-case for Markov chains, so Breeze actually has a helper method built-in that will construct a MH sampler directly from an initial state, a proposal kernel, and a (log) target.

MarkovChain.
  metropolisHastings(0.0, (x: Double) =>
  Uniform(x - 0.5, x + 0.5))(x =>
  Gaussian(0.0, 1.0).logPdf(x)).
  steps.
  drop(1000).
  take(10000).
  toArray

Note that if you are using the MH functionality in Breeze, it is important to make sure that you are using version 0.13 (or later), as I fixed a few issues with the MH code shortly prior to the 0.13 release.

Summary

Viewing MCMC algorithms as infinite streams of state is useful for writing elegant, generic, flexible code. Streams occur everywhere in programming, and so there are lots of libraries for working with them. In this post I used the simple Stream from the Scala standard library, but there are much more powerful and flexible stream libraries for Scala, including fs2 and Akka-streams. But whatever libraries you are using, the fundamental concepts are the same. The most straightforward approach to implementation is to define impure stochastic streams to consume. However, a pure functional approach is also possible, and the Breeze library defines some useful functions to facilitate this approach. I’m still a little bit ambivalent about whether the pure approach is worth the additional cognitive overhead, but it’s certainly very interesting and worth playing with and thinking about the pros and cons.

Complete runnable code for the examples in this post are available from my blog repo.

A scalable particle filter in Scala

Introduction

Many modern algorithms in computational Bayesian statistics have at their heart a particle filter or some other sequential Monte Carlo (SMC) procedure. In this blog I’ve discussed particle MCMC algorithms which use a particle filter in the inner-loop in order to compute a (noisy, unbiased) estimate of the marginal likelihood of the data. These algorithms are often very computationally intensive, either because the forward model used to propagate the particles is expensive, or because the likelihood associated with each particle/observation is expensive (or both). In this case it is desirable to parallelise the particle filter to run on all available cores of a machine, or in some cases, it would even be desirable to distribute the the particle filter computation across a cluster of machines.

Parallelisation is difficult when using the conventional imperative programming languages typically used in scientific and statistical computing, but is much easier using modern functional languages such as Scala. In fact, in languages such as Scala it is possible to describe algorithms at a higher level of abstraction, so that exactly the same algorithm can run in serial, run in parallel across all available cores on a single machine, or run in parallel across a cluster of machines, all without changing any code. Doing so renders parallelisation a non-issue. In this post I’ll talk through how to do this for a simple bootstrap particle filter, but the same principle applies for a large range of statistical computing algorithms.

Typeclasses and monadic collections

In the previous post I gave a quick introduction to the monad concept, and to monadic collections in particular. Many computational tasks in statistics can be accomplished using a sequence of operations on monadic collections. We would like to write code that is independent of any particular implementation of a monadic collection, so that we can switch to a different implementation without changing the code of our algorithm (for example, switching from a serial to a parallel collection). But in strongly typed languages we need to know at compile time that the collection we use has the methods that we require. Typeclasses provide a nice solution to this problem. I don’t want to get bogged down in a big discussion about Scala typeclasses here, but suffice to say that they describe a family of types conforming to a particular interface in an ad hoc loosely coupled way (they are said to provide ad hoc polymorphism). They are not the same as classes in traditional O-O languages, but they do solve a similar problem to the adaptor design pattern, in a much cleaner way. We can describe a simple typeclass for our monadic collection as follows:

trait GenericColl[C[_]] {
  def map[A, B](ca: C[A])(f: A => B): C[B]
  def reduce[A](ca: C[A])(f: (A, A) => A): A
  def flatMap[A, B, D[B] <: GenTraversable[B]](ca: C[A])(f: A => D[B]): C[B]
  def zip[A, B](ca: C[A])(cb: C[B]): C[(A, B)]
  def length[A](ca: C[A]): Int
}

In the typeclass we just list the methods that we expect our generic collection to provide, but do not say anything about how they are implemented. For example, we know that operations such as map and reduce can be executed in parallel, but this is a separate concern. We can now write code that can be used for any collection conforming to the requirements of this typeclass. The full code for this example is provided in the associated github repo for this blog, and includes the obvious syntax for this typeclass, and typeclass instances for the Scala collections Vector and ParVector, that we will exploit later in the example.

SIR step for a bootstrap filter

We can now write some code for a single observation update of a bootstrap particle filter.

def update[S: State, O: Observation, C[_]: GenericColl](
  dataLik: (S, O) => LogLik, stepFun: S => S
)(x: C[S], o: O): (LogLik, C[S]) = {
  val xp = x map (stepFun(_))
  val lw = xp map (dataLik(_, o))
  val max = lw reduce (math.max(_, _))
  val rw = lw map (lwi => math.exp(lwi - max))
  val srw = rw reduce (_ + _)
  val l = rw.length
  val z = rw zip xp
  val rx = z flatMap (p => Vector.fill(Poisson(p._1 * l / srw).draw)(p._2))
  (max + math.log(srw / l), rx)
}

This is a very simple bootstrap filter, using Poisson resampling for simplicity and data locality, but does include use of the log-sum-exp trick to prevent over/underflow of raw weight calculations, and tracks the marginal (log-)likelihood of the observation. With this function we can now pass in a “prior” particle distribution in any collection conforming to our typeclass, together with a propagator function, an observation (log-)likelihood, and an observation, and it will return back a new collection of particles of exactly the same type that was provided for input. Note that all of the operations we require can be accomplished with the standard monadic collection operations declared in our typeclass.

Filtering as a functional fold

Once we have a function for executing one step of a particle filter, we can produce a function for particle filtering as a functional fold over a sequence of observations:

def pFilter[S: State, O: Observation, C[_]: GenericColl, D[O] <: GenTraversable[O]](
  x0: C[S], data: D[O], dataLik: (S, O) => LogLik, stepFun: S => S
): (LogLik, C[S]) = {
  val updater = update[S, O, C](dataLik, stepFun) _
  data.foldLeft((0.0, x0))((prev, o) => {
    val next = updater(prev._2, o)
    (prev._1 + next._1, next._2)
  })
}

Folding data structures is a fundamental concept in functional programming, and is exactly what is required for any kind of filtering problem. Note that Brian Beckman has recently written a series of articles on Kalman filtering as a functional fold.

Marginal likelihoods and parameter estimation

So far we haven’t said anything about parameters or parameter estimation, but this is appropriate, since parametrisation is a separate concern from filtering. However, once we have a function for particle filtering, we can produce a function concerned with evaluating marginal likelihoods trivially:

def pfMll[S: State, P: Parameter, O: Observation, 
            C[_]: GenericColl, D[O] <: GenTraversable[O]](
  simX0: P => C[S], stepFun: P => S => S, 
  dataLik: P => (S, O) => LogLik, data: D[O]
): (P => LogLik) = (th: P) => 
       pFilter(simX0(th), data, dataLik(th), stepFun(th))._1

Note that this higher-order function does not return a value, but instead a function which will accept a parameter as input and return a (log-)likelihood as output. This can then be used for parameter estimation purposes, perhaps being used in a PMMH pMCMC algorithm, or something else. Again, this is a separate concern.

Example

Here I’ll just give a completely trivial toy example, purely to show how the functions work. For avoidance of doubt, I know that there are many better/simpler/easier ways to tackle this problem! Here we will just look at inferring the auto-regression parameter of a linear Gaussian AR(1)-plus-noise model using the functions we have developed.

First we can simulate some synthetic data from this model, using a value of 0.8 for the auto-regression parameter:

val inNoise = Gaussian(0.0, 1.0).sample(99)
val state = DenseVector(inNoise.scanLeft(0.0)((s, i) => 0.8 * s + i).toArray)
val noise = DenseVector(Gaussian(0.0, 2.0).sample(100).toArray)
val data = (state + noise).toArray.toList

Now assuming that we don’t know the auto-regression parameter, we can construct a function to evaluate the likelihood of different parameter values as follows:

val mll = pfMll(
  (th: Double) => Gaussian(0.0, 10.0).sample(10000).toVector.par,
  (th: Double) => (s: Double) => Gaussian(th * s, 1.0).draw,
  (th: Double) => (s: Double, o: Double) => Gaussian(s, 2.0).logPdf(o),
  data
)

Note that the 4 characters “.par” at the end of line 2 are the only difference between running this code serially or in parallel! Now we can run this code by calling the returned function with different values. So, hopefully mll(0.8) will return a larger log-likelihood than (say) mll(0.6) or mll(0.9). The example code in the github repo plots the results of calling mll() for a range of values (note that if that was the genuine use-case, then it would be much better to parallellise the parameter range than the particle filter, due to providing better parallelisation granularity, but many other examples require parallelisation of the particle filter itself). In this particular example, both the forward model and the likelihood are very cheap operations, so there is little to be gained from parallelisation. Nevertheless, I still get a speedup of more than a factor of two using the parallel version on my laptop.

Conclusion

In this post we have shown how typeclasses can be used in Scala to write code that is parallelisation-agnostic. Code written in this way can be run on one or many cores as desired. We’ve illustrated the concept with a scalable particle filter, but nothing about the approach is specific to that application. It would be easy to build up a library of statistical routines this way, all of which can effectively exploit available parallel hardware. Further, although we haven’t demonstrated it here, it is trivial to extend this idea to allow code to be distribution over a cluster of parallel machines if necessary. For example, if an Apache Spark cluster is available, it is easy to make a Spark RDD instance for our generic collection typeclass, that will then allow us to run our (unmodified) particle filter code over a Spark cluster. This emphasises the fact that Spark can be useful for distributing computation as well as just processing “big data”. I’ll say more about Spark in subsequent posts.

Calling Scala code from R using rscala

Introduction

In a previous post I looked at how to call Scala code from R using a CRAN package called jvmr. This package now seems to have been replaced by a new package called rscala. Like the old package, it requires a pre-existing Java installation. Unlike the old package, however, it no longer depends on rJava, which may simplify some installations. The rscala package is well documented, with a reference manual and a draft paper. In this post I will concentrate on the issue of calling sbt-based projects with dependencies on external libraries (such as breeze).

On a system with Java installed, it should be possible to install the rscala package with a simple

install.packages("rscala")

from the R command prompt. Calling

library(rscala)

will check that it has worked. The package will do a sensible search for a Scala installation and use it if it can find one. If it can’t find one (or can only find an installation older than 2.10.x), it will fail. In this case you can download and install a Scala installation specifically for rscala using the command

rscala::scalaInstall()

This option is likely to be attractive to sbt (or IDE) users who don’t like to rely on a system-wide scala installation.

A Gibbs sampler in Scala using Breeze

For illustration I’m going to use a Scala implementation of a Gibbs sampler. The Scala code, gibbs.scala is given below:

package gibbs

object Gibbs {

    import scala.annotation.tailrec
    import scala.math.sqrt
    import breeze.stats.distributions.{Gamma,Gaussian}

    case class State(x: Double, y: Double) {
      override def toString: String = x.toString + " , " + y + "\n"
    }

    def nextIter(s: State): State = {
      val newX = Gamma(3.0, 1.0/((s.y)*(s.y)+4.0)).draw
      State(newX, Gaussian(1.0/(newX+1), 1.0/sqrt(2*newX+2)).draw)
    }

    @tailrec def nextThinnedIter(s: State,left: Int): State =
      if (left==0) s else nextThinnedIter(nextIter(s),left-1)

    def genIters(s: State, stop: Int, thin: Int): List[State] = {
      @tailrec def go(s: State, left: Int, acc: List[State]): List[State] =
        if (left>0)
          go(nextThinnedIter(s,thin), left-1, s::acc)
          else acc
      go(s,stop,Nil).reverse
    }

    def main(args: Array[String]) = {
      if (args.length != 3) {
        println("Usage: sbt \"run <outFile> <iters> <thin>\"")
        sys.exit(1)
      } else {
        val outF=args(0)
        val iters=args(1).toInt
        val thin=args(2).toInt
        val out = genIters(State(0.0,0.0),iters,thin)
        val s = new java.io.FileWriter(outF)
        s.write("x , y\n")
        out map { it => s.write(it.toString) }
        s.close
      }
    }

}

This code requires Scala and the Breeze scientific library in order to build. We can specify this in a sbt build file, which should be called build.sbt and placed in the same directory as the Scala code.

name := "gibbs"

version := "0.1"

scalacOptions ++= Seq("-unchecked", "-deprecation", "-feature")

libraryDependencies  ++= Seq(
            "org.scalanlp" %% "breeze" % "0.10",
            "org.scalanlp" %% "breeze-natives" % "0.10"
)

resolvers ++= Seq(
            "Sonatype Snapshots" at "https://oss.sonatype.org/content/repositories/snapshots/",
            "Sonatype Releases" at "https://oss.sonatype.org/content/repositories/releases/"
)

scalaVersion := "2.11.6"

Now, from a system command prompt in the directory where the files are situated, it should be possible to download all dependencies and compile and run the code with a simple

sbt "run output.csv 50000 1000"

sbt magically manages all of the dependencies for us so that we don’t have to worry about them. However, for calling from R, it may be desirable to run the code without running sbt. There are several ways to achieve this, but the simplest is to build an “assembly jar” or “fat jar”, which is a Java byte-code file containing all code and libraries required in order to run the code on any system with a Java installation.

To build an assembly jar first create a subdirectory called project (the name matters), an in it place two files. The first should be called assembly.sbt, and should contain the line

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.13.0")

Since the version of the assembly tool can depend on the version of sbt, it is also best to fix the version of sbt being used by creating another file in the project directory called build.properties, which should contain the line

sbt.version=0.13.7

Now return to the parent directory and run

sbt assembly

If this works, it should create a fat jar target/scala-2.11/gibbs-assembly-0.1.jar. You can check it works by running

java -jar target/scala-2.11/gibbs-assembly-0.1.jar output.csv 10000 10

Assuming that it does, you are now ready to try running the code from within R.

Calling via R system calls

Since this code takes a relatively long time to run, calling it from R via simple system calls isn’t a particularly terrible idea. For example, we can do this from the R command prompt with the following commands

system("java -jar target/scala-2.11/gibbs-assembly-0.1.jar output.csv 50000 1000")
out=read.csv("output.csv")
library(smfsb)
mcmcSummary(out,rows=2)

This works fine, but is a bit clunky. Tighter integration between R and Scala would be useful, which is where rscala comes in.

Calling assembly Scala projects via rscala

rscala provides a very simple way to embed a Scala interpreter within an R session, to be able to execute Scala expressions from R and to have the results returned back to the R session for further processing. The main issue with using this in practice is managing dependencies on external libraries and setting the Scala classpath correctly. By using an assembly jar we can bypass most of these issues, and it becomes trivial to call our Scala code direct from the R interpreter, as the following code illustrates.

library(rscala)
sc=scalaInterpreter("target/scala-2.11/gibbs-assembly-0.1.jar")
sc%~%'import gibbs.Gibbs._'
out=sc%~%'genIters(State(0.0,0.0),50000,1000).toArray.map{s=>Array(s.x,s.y)}'
library(smfsb)
mcmcSummary(out,rows=2)

Here we call the getIters function directly, rather than via the main method. This function returns an immutable List of States. Since R doesn’t understand this, we map it to an Array of Arrays, which R then unpacks into an R matrix for us to store in the matrix out.

Summary

The CRAN package rscala makes it very easy to embed a Scala interpreter within an R session. However, for most non-trivial statistical computing problems, the Scala code will have dependence on external scientific libraries such as Breeze. The standard way to easily manage external dependencies in the Scala ecosystem is sbt. Given an sbt-based Scala project, it is easy to generate an assembly jar in order to initialise the rscala Scala interpreter with the classpath needed to call arbitrary Scala functions. This provides very convenient inter-operability between R and Scala for many statistical computing applications.