Index to first 75 posts

This is the 75th post to this blog. Every 25 posts I produce an index of posts so far for easy reference. If I make it to post 100 I’ll do something similar.

Advertisements

A probability monad for the bootstrap particle filter

Introduction

In the previous post I showed how to write your own general-purpose monadic probabilistic programming language from scratch in 50 lines of (Scala) code. That post is a pre-requisite for this one, so if you haven’t read it, go back and have a quick skim through it before proceeding. In that post I tried to keep everything as simple as possible, but at the expense of both elegance and efficiency. In this post I’ll address one problem with the implementation from that post – the memory (and computational) overhead associated with forming the Cartesian product of particle sets during monadic binding (flatMap). So if particle sets are typically of size N, then the Cartesian product is of size N^2, and multinomial resampling is applied to this set of size N^2 in order to sample back down to a set of size N. But this isn’t actually necessary. We can directly construct a set of size N, certainly saving memory, but also potentially saving computation time if the conditional distribution (on the right of the monadic bind) can be efficiently sampled. If we do this we will have a probability monad encapsulating the logic of a bootstrap particle filter, such as is often used for computing the filtering distribution of a state-space model in time series analysis. This simple change won’t solve the computational issues associated with deep monadic binding, but does solve the memory problem, and can lead to computationally efficient algorithms so long as care is taken in the formulation of probabilistic programs to ensure that deep monadic binding doesn’t occur. We’ll discuss that issue in the context of state-space models later, once we have our new SMC-based probability monad.

Materials for this post can be found in my blog repo, and a draft of this post itself can be found in the form of an executable tut document.

An SMC-based monad

The idea behind the approach to binding used in this monad is to mimic the “predict” step of a bootstrap particle filter. Here, for each particle in the source distribution, exactly one particle is drawn from the required conditional distribution and paired with the source particle, preserving the source particle’s original weight. So, in order to operationalise this, we will need a draw method adding into our probability monad. It will also simplify things to add a flatMap method to our Particle type constructor.

To follow along, you can type sbt console from the min-ppl2 directory of my blog repo, then paste blocks of code one at a time.

  import breeze.stats.{distributions => bdist}
  import breeze.linalg.DenseVector
  import cats._
  import cats.implicits._

  implicit val numParticles = 2000

  case class Particle[T](v: T, lw: Double) { // value and log-weight
    def map[S](f: T => S): Particle[S] = Particle(f(v), lw)
    def flatMap[S](f: T => Particle[S]): Particle[S] = {
      val ps = f(v)
      Particle(ps.v, lw + ps.lw)
    }
  }

I’ve added a dependence on cats here, so that we can use some derived methods, later. To take advantage of this, we must provide evidence that our custom types conform to standard type class interfaces. For example, we can provide evidence that Particle[_] is a monad as follows.

  implicit val particleMonad = new Monad[Particle] {
    def pure[T](t: T): Particle[T] = Particle(t, 0.0)
    def flatMap[T,S](pt: Particle[T])(f: T => Particle[S]): Particle[S] = pt.flatMap(f)
    def tailRecM[T,S](t: T)(f: T => Particle[Either[T,S]]): Particle[S] = ???
  }

The technical details are not important for this post, but we’ll see later what this can give us.

We can now define our Prob[_] monad in the following way.

  trait Prob[T] {
    val particles: Vector[Particle[T]]
    def draw: Particle[T]
    def mapP[S](f: T => Particle[S]): Prob[S] = Empirical(particles map (_ flatMap f))
    def map[S](f: T => S): Prob[S] = mapP(v => Particle(f(v), 0.0))
    def flatMap[S](f: T => Prob[S]): Prob[S] = mapP(f(_).draw)
    def resample(implicit N: Int): Prob[T] = {
      val lw = particles map (_.lw)
      val mx = lw reduce (math.max(_,_))
      val rw = lw map (lwi => math.exp(lwi - mx))
      val law = mx + math.log(rw.sum/(rw.length))
      val ind = bdist.Multinomial(DenseVector(rw.toArray)).sample(N)
      val newParticles = ind map (i => particles(i))
      Empirical(newParticles.toVector map (pi => Particle(pi.v, law)))
    }
    def cond(ll: T => Double): Prob[T] = mapP(v => Particle(v, ll(v)))
    def empirical: Vector[T] = resample.particles.map(_.v)
  }

  case class Empirical[T](particles: Vector[Particle[T]]) extends Prob[T] {
    def draw: Particle[T] = {
      val lw = particles map (_.lw)
      val mx = lw reduce (math.max(_,_))
      val rw = lw map (lwi => math.exp(lwi - mx))
      val law = mx + math.log(rw.sum/(rw.length))
      val idx = bdist.Multinomial(DenseVector(rw.toArray)).draw
      Particle(particles(idx).v, law)
    }
  }

As before, if you are pasting code blocks into the REPL, you will need to use :paste mode to paste these two definitions together.

The essential structure is similar to that from the previous post, but with a few notable differences. Most fundamentally, we now require any concrete implementation to provide a draw method returning a single particle from the distribution. Like before, we are not worrying about purity of functional code here, and using a standard random number generator with a globally mutating state. We can define a mapP method (for “map particle”) using the new flatMap method on Particle, and then use that to define map and flatMap for Prob[_]. Crucially, draw is used to define flatMap without requiring a Cartesian product of distributions to be formed.

We add a draw method to our Empirical[_] implementation. This method is computationally intensive, so it will still be computationally problematic to chain several flatMaps together, but this will no longer be N^2 in memory utilisation. Note that again we carefully set the weight of the drawn particle so that its raw weight is the average of the raw weight of the empirical distribution. This is needed to propagate conditioning information correctly back through flatMaps. There is obviously some code duplication between the draw method on Empirical and the resample method on Prob, but I’m not sure it’s worth factoring out.

It is worth noting that neither flatMap nor cond triggers resampling, so the user of the library is now responsible for resampling when appropriate.

We can provide evidence that Prob[_] forms a monad just like we did Particle[_].

  implicit val probMonad = new Monad[Prob] {
    def pure[T](t: T): Prob[T] = Empirical(Vector(Particle(t, 0.0)))
    def flatMap[T,S](pt: Prob[T])(f: T => Prob[S]): Prob[S] = pt.flatMap(f)
    def tailRecM[T,S](t: T)(f: T => Prob[Either[T,S]]): Prob[S] = ???
  }

Again, we’ll want to be able to create a distribution from an unweighted collection of values.

  def unweighted[T](ts: Vector[T], lw: Double = 0.0): Prob[T] =
    Empirical(ts map (Particle(_, lw)))

We will again define an implementation for distributions with tractable likelihoods, which are therefore easy to condition on. They will typically also be easy to draw from efficiently, and we will use this fact, too.

  trait Dist[T] extends Prob[T] {
    def ll(obs: T): Double
    def ll(obs: Seq[T]): Double = obs map (ll) reduce (_+_)
    def fit(obs: Seq[T]): Prob[T] = mapP(v => Particle(v, ll(obs)))
    def fitQ(obs: Seq[T]): Prob[T] = Empirical(Vector(Particle(obs.head, ll(obs))))
    def fit(obs: T): Prob[T] = fit(List(obs))
    def fitQ(obs: T): Prob[T] = fitQ(List(obs))
  }

We can give implementations of this for a few standard distributions.

  case class Normal(mu: Double, v: Double)(implicit N: Int) extends Dist[Double] {
    lazy val particles = unweighted(bdist.Gaussian(mu, math.sqrt(v)).
      sample(N).toVector).particles
    def draw = Particle(bdist.Gaussian(mu, math.sqrt(v)).draw, 0.0)
    def ll(obs: Double) = bdist.Gaussian(mu, math.sqrt(v)).logPdf(obs)
  }

  case class Gamma(a: Double, b: Double)(implicit N: Int) extends Dist[Double] {
    lazy val particles = unweighted(bdist.Gamma(a, 1.0/b).
      sample(N).toVector).particles
    def draw = Particle(bdist.Gamma(a, 1.0/b).draw, 0.0)
    def ll(obs: Double) = bdist.Gamma(a, 1.0/b).logPdf(obs)
  }

  case class Poisson(mu: Double)(implicit N: Int) extends Dist[Int] {
    lazy val particles = unweighted(bdist.Poisson(mu).
      sample(N).toVector).particles
    def draw = Particle(bdist.Poisson(mu).draw, 0.0)
    def ll(obs: Int) = bdist.Poisson(mu).logProbabilityOf(obs)
  }

Note that we now have to provide an (efficient) draw method for each implementation, returning a single draw from the distribution as a Particle with a (raw) weight of 1 (log weight of 0).

We are done. It’s a few more lines of code than that from the previous post, but this is now much closer to something that could be used in practice to solve actual inference problems using a reasonable number of particles. But to do so we will need to be careful do avoid deep monadic binding. This is easiest to explain with a concrete example.

Using the SMC-based probability monad in practice

Monadic binding and applicative structure

As explained in the previous post, using Scala’s for-expressions for monadic binding gives a natural and elegant PPL for our probability monad “for free”. This is fine, and in general there is no reason why using it should lead to inefficient code. However, for this particular probability monad implementation, it turns out that deep monadic binding comes with a huge performance penalty. For a concrete example, consider the following specification, perhaps of a prior distribution over some independent parameters.

    val prior = for {
      x <- Normal(0,1)
      y <- Gamma(1,1)
      z <- Poisson(10)
    } yield (x,y,z)

Don’t paste that into the REPL – it will take an age to complete!

Again, I must emphasise that there is nothing wrong with this specification, and there is no reason in principle why such a specification can’t be computationally efficient – it’s just a problem for our particular probability monad. We can begin to understand the problem by thinking about how this will be de-sugared by the compiler. Roughly speaking, the above will de-sugar to the following nested flatMaps.

    val prior2 =
      Normal(0,1) flatMap {x =>
        Gamma(1,1) flatMap {y =>
          Poisson(10) map {z =>
            (x,y,z)}}}

Again, beware of pasting this into the REPL.

So, although written from top to bottom, the nesting is such that the flatMaps collapse from the bottom-up. The second flatMap (the first to collapse) isn’t such a problem here, as the Poisson has a O(1) draw method. But the result is an empirical distribution, which has an O(N) draw method. So the first flatMap (the second to collapse) is an O(N^2) operation. By extension, it’s easy to see that the computational cost of nested flatMaps will be exponential in the number of monadic binds. So, looking back at the for expression, the problem is that there are three <-. The last one isn’t a problem since it corresponds to a map, and the second last one isn’t a problem, since the final distribution is tractable with an O(1) draw method. The problem is the first <-, corresponding to a flatMap of one empirical distribution with respect to another. For our particular probability monad, it’s best to avoid these if possible.

The interesting thing to note here is that because the distributions are independent, there is no need for them to be sequenced. They could be defined in any order. In this case it makes sense to use the applicative structure implied by the monad.

Now, since we have told cats that Prob[_] is a monad, it can provide appropriate applicative methods for us automatically. In Cats, every monad is assumed to be also an applicative functor (which is true in Cartesian closed categories, and Cats implicitly assumes that all functors and monads are defined over CCCs). So we can give an alternative specification of the above prior using applicative composition.

 val prior3 = Applicative[Prob].tuple3(Normal(0,1), Gamma(1,1), Poisson(10))
// prior3: Wrapped.Prob[(Double, Double, Int)] = Empirical(Vector(Particle((-0.057088546468105204,0.03027578552505779,9),0.0), Particle((-0.43686658266043743,0.632210127012762,14),0.0), Particle((-0.8805715148936012,3.4799656228544706,4),0.0), Particle((-0.4371726407147289,0.0010707859994652403,12),0.0), Particle((2.0283297088320755,1.040984491158822,10),0.0), Particle((1.2971862986495886,0.189166705596747,14),0.0), Particle((-1.3111333817551083,0.01962422606642761,9),0.0), Particle((1.6573851896142737,2.4021836368401415,9),0.0), Particle((-0.909927220984726,0.019595551644771683,11),0.0), Particle((0.33888133893822464,0.2659823344145805,10),0.0), Particle((-0.3300797295729375,3.2714740256437667,10),0.0), Particle((-1.8520554352884224,0.6175322756460341,10),0.0), Particle((0.541156780497547...

This one is mathematically equivalent, but safe to paste into your REPL, as it does not involve deep monadic binding, and can be used whenever we want to compose together independent components of a probabilistic program. Note that “tupling” is not the only possibility – Cats provides a range of functions for manipulating applicative values.

This is one way to avoid deep monadic binding, but another strategy is to just break up a large for expression into separate smaller for expressions. We can examine this strategy in the context of state-space modelling.

Particle filtering for a non-linear state-space model

We can now re-visit the DGLM example from the previous post. We began by declaring some observations and a prior.

    val data = List(2,1,0,2,3,4,5,4,3,2,1)
// data: List[Int] = List(2, 1, 0, 2, 3, 4, 5, 4, 3, 2, 1)

    val prior = for {
      w <- Gamma(1, 1)
      state0 <- Normal(0.0, 2.0)
    } yield (w, List(state0))
// prior: Wrapped.Prob[(Double, List[Double])] = Empirical(Vector(Particle((4.220683377724395,List(0.37256749723762683)),0.0), Particle((0.4436668049925418,List(-1.0053578391265572)),0.0), Particle((0.9868899648436931,List(-0.6985099310193449)),0.0), Particle((0.13474375773634908,List(0.9099291736792412)),0.0), Particle((1.9654021747685184,List(-0.042127103727998175)),0.0), Particle((0.21761202474220223,List(1.1074616830012525)),0.0), Particle((0.31037163527711015,List(0.9261849914020324)),0.0), Particle((1.672438830781466,List(0.01678529855289384)),0.0), Particle((0.2257151759143097,List(2.5511304854128354)),0.0), Particle((0.3046489890769499,List(3.2918304533361398)),0.0), Particle((1.5115941814057159,List(-1.633612165168878)),0.0), Particle((1.4185906813831506,List(-0.8460922678989864))...

Looking carefully at the for-expression, there are just two <-, and the distribution on the RHS of the flatMap is tractable, so this is just O(N). So far so good.

Next, let’s look at the function to add a time point, which previously looked something like the following.

    def addTimePointSIS(current: Prob[(Double, List[Double])],
      obs: Int): Prob[(Double, List[Double])] = {
      println(s"Conditioning on observation: $obs")
      for {
        tup <- current
        (w, states) = tup
        os = states.head
        ns <- Normal(os, w)
        _ <- Poisson(math.exp(ns)).fitQ(obs)
      } yield (w, ns :: states)
    }
// addTimePointSIS: (current: Wrapped.Prob[(Double, List[Double])], obs: Int)Wrapped.Prob[(Double, List[Double])]

Recall that our new probability monad does not automatically trigger resampling, so applying this function in a fold will lead to a simple sampling importance sampling (SIS) particle filter. Typically, the bootstrap particle filter includes resampling after each time point, giving a special case of a sampling importance resampling (SIR) particle filter, which we could instead write as follows.

    def addTimePointSimple(current: Prob[(Double, List[Double])],
      obs: Int): Prob[(Double, List[Double])] = {
      println(s"Conditioning on observation: $obs")
      val updated = for {
        tup <- current
        (w, states) = tup
        os = states.head
        ns <- Normal(os, w)
        _ <- Poisson(math.exp(ns)).fitQ(obs)
      } yield (w, ns :: states)
      updated.resample
    }
// addTimePointSimple: (current: Wrapped.Prob[(Double, List[Double])], obs: Int)Wrapped.Prob[(Double, List[Double])]

This works fine, but we can see that there are three <- in this for expression. This leads to a flatMap with an empirical distribution on the RHS, and hence is O(N^2). But this is simple enough to fix, by separating the updating process into separate “predict” and “update” steps, which is how people typically formulate particle filters for state-space models, anyway. Here we could write that as

    def addTimePoint(current: Prob[(Double, List[Double])],
      obs: Int): Prob[(Double, List[Double])] = {
      println(s"Conditioning on observation: $obs")
      val predict = for {
        tup <- current
        (w, states) = tup
        os = states.head
        ns <- Normal(os, w)
      }
      yield (w, ns :: states)
      val updated = for {
        tup <- predict
        (w, states) = tup
        st = states.head
        _ <- Poisson(math.exp(st)).fitQ(obs)
      } yield (w, states)
      updated.resample
    }
// addTimePoint: (current: Wrapped.Prob[(Double, List[Double])], obs: Int)Wrapped.Prob[(Double, List[Double])]

By breaking the for expression into two: the first for the “predict” step and the second for the “update” (conditioning on the observation), we get two O(N) operations, which for large N is clearly much faster. We can then run the filter by folding over the observations.

  import breeze.stats.{meanAndVariance => meanVar}
// import breeze.stats.{meanAndVariance=>meanVar}

  val mod = data.foldLeft(prior)(addTimePoint(_,_)).empirical
// Conditioning on observation: 2
// Conditioning on observation: 1
// Conditioning on observation: 0
// Conditioning on observation: 2
// Conditioning on observation: 3
// Conditioning on observation: 4
// Conditioning on observation: 5
// Conditioning on observation: 4
// Conditioning on observation: 3
// Conditioning on observation: 2
// Conditioning on observation: 1
// mod: Vector[(Double, List[Double])] = Vector((0.24822528144246606,List(0.06290285371838457, 0.01633338109272575, 0.8997103339551227, 1.5058726341571411, 1.0579925693609091, 1.1616536515200064, 0.48325623593870665, 0.8457351097543767, -0.1988290999293708, -0.4787511341321954, -0.23212497417019512, -0.15327432440577277)), (1.111430233331792,List(0.6709342824443849, 0.009092797044165657, -0.13203367846117453, 0.4599952735399485, 1.3779288637042504, 0.6176597963402879, 0.6680455419800753, 0.48289163013446945, -0.5994001698510807, 0.4860969602653898, 0.10291798193078927, 1.2878325765987266)), (0.6118925941009055,List(0.6421161986636132, 0.679470360928868, 1.0552459559203342, 1.200835166087372, 1.3690372269589233, 1.8036766847282912, 0.6229883551656629, 0.14872642198313774, -0.122700856878725...

  meanVar(mod map (_._1)) // w
// res0: breeze.stats.meanAndVariance.MeanAndVariance = MeanAndVariance(0.2839184023932576,0.07391602428256917,2000)

  meanVar(mod map (_._2.reverse.head)) // initial state
// res1: breeze.stats.meanAndVariance.MeanAndVariance = MeanAndVariance(0.26057368528422714,0.4802810202354611,2000)

  meanVar(mod map (_._2.head)) // final state
// res2: breeze.stats.meanAndVariance.MeanAndVariance = MeanAndVariance(0.5448036669181697,0.28293080584600894,2000)

Summary and conclusions

Here we have just done some minor tidying up of the rather naive probability monad from the previous post to produce an SMC-based probability monad with improved performance characteristics. Again, we get an embedded probabilistic programming language “for free”. Although the language itself is very flexible, allowing us to construct more-or-less arbitrary probabilistic programs for Bayesian inference problems, we saw that a bug/feature of this particular inference algorithm is that care must be taken to avoid deep monadic binding if reasonable performance is to be obtained. In most cases this is simple to achieve by using applicative composition or by breaking up large for expressions.

There are still many issues and inefficiencies associated with this PPL. In particular, if the main intended application is to state-space models, it would make more sense to tailor the algorithms and implementations to exactly that case. OTOH, if the main concern is a generic PPL, then it would make sense to make the PPL independent of the particular inference algorithm. These are both potential topics for future posts.

Software

  • min-ppl2 – code associated with this blog post
  • Rainier – a more efficient PPL with similar syntax
  • monad-bayes – a Haskell library exploring related ideas

Write your own general-purpose monadic probabilistic programming language from scratch in 50 lines of (Scala) code

Background

In May I attended a great workshop on advances and challenges in machine learning languages at the CMS in Cambridge. There was an a good mix of people from different disciplines, and a bit of a theme around probabilistic programming. The workshop schedule includes links to many of the presentations, and is generally worth browsing. In particular, it includes a link to the slides for my presentation on a compositional approach to scalable Bayesian computation and probabilistic programming. I’ve given a few talks on this kind of thing over the last couple of years, at Newcastle, at the Isaac Newton Institute in Cambridge (twice), and at CIRM in France. But I think I explained things best at this workshop at the CMS, though my impression could partly have been a reflection of the more interested and relevant audience. In the talk I started with a basic explanation of why ideas from category theory and functional programming can help to solve problems in statistical computing in a more composable and scalable way, before moving on to discuss probability monads and their fundamental connection to probabilistic programming. The take home message from the talk is that if you have a generic inference algorithm, expressing the logic in the context of probability monads can give you an embedded probabilistic programming language (PPL) for that inference algorithm essentially “for free”.

So, during my talk I said something a little fool-hardy. I can’t remember my exact words, but while presenting the idea behind an SMC-based probability monad I said something along the lines of “one day I will write a blog post on how to write a probabilistic programming language from scratch in 50 lines of code, and this is how I’ll do it“! Rather predictably (with hindsight), immediately after my talk about half a dozen people all pleaded with me to urgently write the post! I’ve been a little busy since then, but now that things have settled down a little for the summer, I’ve some time to think and code, so here is that post.

Introduction

The idea behind this post is to show that, if you think about the problem in the right way, and use a programming language with syntactic support for monadic composition, then producing a flexible, general, compositional, embedded domain specific language (DSL) for probabilistic programming based on a given generic inference algorithm is no more effort than hard-coding two or three illustrative examples. You would need to code up two or three examples for a paper anyway, but providing a PPL is way more useful. There is also an interesting converse to this, which is that if you can’t easily produce a PPL for your “general” inference algorithm, then perhaps it isn’t quite as “general” as you thought. I’ll try to resist exploring that here…

To illustrate these principles I want to develop a fairly minimal PPL, so that the complexities of the inference algorithm don’t hide the simplicity of the PPL embedding. Importance sampling with resampling is probably the simplest useful generic Bayesian inference algorithm to implement, so that’s what I’ll use. Note that there are many limitations of the approach that I will adopt, which will make it completely unsuitable for “real” problems. In particular, this implementation is: inefficient, in terms of both compute time and memory usage, statistically inefficient for deep nesting and repeated conditioning, due to the particle degeneracy problem, specific to a particular probability monad, strictly evaluated, impure (due to mutation of global random number state), etc. All of these things are easily fixed, but all at the expense of greater abstraction, complexity and lines of code. I’ll probably discuss some of these generalisations and improvements in future posts, but for this post I want to keep everything as short and simple as practical. It’s also worth mentioning that there is nothing particularly original here. Many people have written about monadic embedded PPLs, and several have used an SMC-based monad for illustration. I’ll give some pointers to useful further reading at the end.

The language, in 50 lines of code

Without further ado, let’s just write the PPL. I’m using plain Scala, with just a dependency on the Breeze scientific library, which I’m going to use for simulating random numbers from standard distributions, and evaluation of their log densities. I have a directory of materials associated with this post in a git repo. This post is derived from an executable tut document (so you know it works), which can be found here. If you just want to follow along copying code at the command prompt, just run sbt from an empty or temp directory, and copy the following to spin up a Scala console with the Breeze dependency:

set libraryDependencies += "org.scalanlp" %% "breeze" % "1.0-RC4"
set libraryDependencies += "org.scalanlp" %% "breeze-natives" % "1.0-RC4"
set scalaVersion := "2.13.0"
console

We start with a couple of Breeze imports

import breeze.stats.{distributions => bdist}
import breeze.linalg.DenseVector

which are not strictly necessary, but clean up the subsequent code. We are going to use a set of weighted particles to represent a probability distribution empirically, so we’ll start by defining an appropriate ADT for these:

implicit val numParticles = 300

case class Particle[T](v: T, lw: Double) { // value and log-weight
  def map[S](f: T => S): Particle[S] = Particle(f(v), lw)
}

We also include a map method for pushing a particle through a transformation, and a default number of particles for sampling and resampling. 300 particles are enough for illustrative purposes. Ideally it would be good to increase this for more realistic experiments. We can use this particle type to build our main probability monad as follows.

trait Prob[T] {
  val particles: Vector[Particle[T]]
  def map[S](f: T => S): Prob[S] = Empirical(particles map (_ map f))
  def flatMap[S](f: T => Prob[S]): Prob[S] = {
    Empirical((particles map (p => {
      f(p.v).particles.map(psi => Particle(psi.v, p.lw + psi.lw))
    })).flatten).resample
  }
  def resample(implicit N: Int): Prob[T] = {
    val lw = particles map (_.lw)
    val mx = lw reduce (math.max(_,_))
    val rw = lw map (lwi => math.exp(lwi - mx))
    val law = mx + math.log(rw.sum/(rw.length))
    val ind = bdist.Multinomial(DenseVector(rw.toArray)).sample(N)
    val newParticles = ind map (i => particles(i))
    Empirical(newParticles.toVector map (pi => Particle(pi.v, law)))
  }
  def cond(ll: T => Double): Prob[T] =
    Empirical(particles map (p => Particle(p.v, p.lw + ll(p.v))))
  def empirical: Vector[T] = resample.particles.map(_.v)
}

case class Empirical[T](particles: Vector[Particle[T]]) extends Prob[T]

Note that if you are pasting into the Scala REPL you will need to use :paste mode for this. So Prob[_] is our base probability monad trait, and Empirical[_] is our simplest implementation, which is just a collection of weighted particles. The method flatMap forms the naive product of empirical measures and then resamples in order to stop an explosion in the number of particles. There are two things worth noting about the resample method. The first is that the log-sum-exp trick is being used to avoid overflow and underflow when the log weights are exponentiated. The second is that although the method returns an equally weighted set of particles, the log weights are all set in order that the average raw weight of the output set matches the average raw weight of the input set. This is a little tricky to explain, but it turns out to be necessary in order to correctly propagate conditioning information back through multiple monadic binds (flatMaps). The cond method allows conditioning of a distribution using an arbitrary log-likelihood. It is included for comparison with some other implementations I will refer to later, but we won’t actually be using it, so we could save two lines of code here if necessary. The empirical method just extracts an unweighted set of values from a distribution for subsequent analysis.

It will be handy to have a function to turn a bunch of unweighted particles into a set of particles with equal weights (a sort-of inverse of the empirical method just described), so we can define that as follows.

def unweighted[T](ts: Vector[T], lw: Double = 0.0): Prob[T] =
  Empirical(ts map (Particle(_, lw)))

Probabilistic programming is essentially trivial if we only care about forward sampling. But interesting PPLs allow us to condition on observed values of random variables. In the context of SMC, this is simplest when the distribution being conditioned has a tractable log-likelihood. So we can now define an extension of our probability monad for distributions with a tractable log-likelihood, and define a bunch of convenient conditioning (or “fitting”) methods using it.

trait Dist[T] extends Prob[T] {
  def ll(obs: T): Double
  def ll(obs: Seq[T]): Double = obs map (ll) reduce (_+_)
  def fit(obs: Seq[T]): Prob[T] =
    Empirical(particles map (p => Particle(p.v, p.lw + ll(obs))))
  def fitQ(obs: Seq[T]): Prob[T] = Empirical(Vector(Particle(obs.head, ll(obs))))
  def fit(obs: T): Prob[T] = fit(List(obs))
  def fitQ(obs: T): Prob[T] = fitQ(List(obs))
}

The only unimplemented method is ll(). The fit method re-weights a particle set according to the observed log-likelihood. For convenience, it also returns a particle cloud representing the posterior-predictive distribution of an iid value from the same distribution. This is handy, but comes at the expense of introducing an additional particle cloud. So, if you aren’t interested in the posterior predictive, you can avoid this cost by using the fitQ method (for “fit quick”), which doesn’t return anything useful. We’ll see examples of this in practice, shortly. Note that the fitQ methods aren’t strictly required for our “minimal” PPL, so we can save a couple of lines by omitting them if necessary. Similarly for the variants which allow conditioning on a collection of iid observations from the same distribution.

At this point we are essentially done. But for convenience, we can define a few standard distributions to help get new users of our PPL started. Of course, since the PPL is embedded, it is trivial to add our own additional distributions later.

case class Normal(mu: Double, v: Double)(implicit N: Int) extends Dist[Double] {
  lazy val particles = unweighted(bdist.Gaussian(mu, math.sqrt(v)).sample(N).toVector).particles
  def ll(obs: Double) = bdist.Gaussian(mu, math.sqrt(v)).logPdf(obs) }

case class Gamma(a: Double, b: Double)(implicit N: Int) extends Dist[Double] {
  lazy val particles = unweighted(bdist.Gamma(a, 1.0/b).sample(N).toVector).particles
  def ll(obs: Double) = bdist.Gamma(a, 1.0/b).logPdf(obs) }

case class Poisson(mu: Double)(implicit N: Int) extends Dist[Int] {
  lazy val particles = unweighted(bdist.Poisson(mu).sample(N).toVector).particles
  def ll(obs: Int) = bdist.Poisson(mu).logProbabilityOf(obs) }

Note that I’ve parameterised the Normal and Gamma the way that statisticians usually do, and not the way they are usually parameterised in scientific computing libraries (such as Breeze).

That’s it! This is a complete, general-purpose, composable, monadic PPL, in 50 (actually, 48, and fewer still if you discount trailing braces) lines of code. Let’s now see how it works in practice.

Examples

Normal random sample

We’ll start off with just about the simplest slightly interesting example I can think of: Bayesian inference for the mean and variance of a normal distribution from a random sample.

import breeze.stats.{meanAndVariance => meanVar}
// import breeze.stats.{meanAndVariance=>meanVar}

val mod = for {
  mu <- Normal(0, 100)
  tau <- Gamma(1, 0.1)
  _ <- Normal(mu, 1.0/tau).fitQ(List(8.0,9,7,7,8,10))
} yield (mu,tau)
// mod: Wrapped.Prob[(Double, Double)] = Empirical(Vector(Particle((8.718127116254472,0.93059589932682),-15.21683812389373), Particle((7.977706390420308,1.1575288208065433),-15.21683812389373), Particle((7.977706390420308,1.1744750937611985),-15.21683812389373), Particle((7.328100552769214,1.1181787982959164),-15.21683812389373), Particle((7.977706390420308,0.8283737237370494),-15.21683812389373), Particle((8.592847414557049,2.2934836446009026),-15.21683812389373), Particle((8.718127116254472,1.498741032928539),-15.21683812389373), Particle((8.592847414557049,0.2506065368748732),-15.21683812389373), Particle((8.543283880264225,1.127386759627675),-15.21683812389373), Particle((7.977706390420308,1.3508728798704925),-15.21683812389373), Particle((7.977706390420308,1.1134430556990933),-15.2168...

val modEmp = mod.empirical
// modEmp: Vector[(Double, Double)] = Vector((7.977706390420308,0.8748006833362748), (6.292345096890432,0.20108091703626174), (9.15330820843396,0.7654238730107492), (8.960935105658741,1.027712984079369), (7.455292602273359,0.49495749079351836), (6.911716909394562,0.7739749058662421), (6.911716909394562,0.6353785792877397), (7.977706390420308,1.1744750937611985), (7.977706390420308,1.1134430556990933), (8.718127116254472,1.166399872049532), (8.763777227034538,1.0468304705769353), (8.718127116254472,0.93059589932682), (7.328100552769214,1.6166695922250236), (8.543283880264225,0.4689300351248357), (8.543283880264225,2.0028918490755094), (7.536025958690963,0.6282318170458533), (7.328100552769214,1.6166695922250236), (7.049843463553113,0.20149378088848635), (7.536025958690963,2.3565657669819897...

meanVar(modEmp map (_._1)) // mu
// res0: breeze.stats.meanAndVariance.MeanAndVariance = MeanAndVariance(8.311171010932343,0.4617800639333532,300)

meanVar(modEmp map (_._2)) // tau
// res1: breeze.stats.meanAndVariance.MeanAndVariance = MeanAndVariance(0.940762723934599,0.23641881704888842,300)

Note the use of the empirical method to turn the distribution into an unweighted set of particles for Monte Carlo analysis. Anyway, the main point is that the syntactic sugar for monadic binds (flatMaps) provided by Scala’s for-expressions (similar to do-notation in Haskell) leads to readable code not so different to that in well-known general-purpose PPLs such as BUGS, JAGS, or Stan. There are some important differences, however. In particular, the embedded DSL has probabilistic programs as regular values in the host language. These may be manipulated and composed like other values. This makes this probabilistic programming language more composable than the aforementioned languages, which makes it much simpler to build large, complex probabilistic programs from simpler, well-tested, components, in a scalable way. That is, this PPL we have obtained “for free” is actually in many ways better than most well-known PPLs.

Noisy measurements of a count

Here we’ll look at the problem of inference for a discrete count given some noisy iid continuous measurements of it.

val mod = for {
  count <- Poisson(10)
  tau <- Gamma(1, 0.1)
  _ <- Normal(count, 1.0/tau).fitQ(List(4.2,5.1,4.6,3.3,4.7,5.3))
} yield (count, tau)
// mod: Wrapped.Prob[(Int, Double)] = Empirical(Vector(Particle((5,4.488795220669575),-11.591037521513753), Particle((5,1.7792314573063672),-11.591037521513753), Particle((5,2.5238021156137673),-11.591037521513753), Particle((4,3.280754333896923),-11.591037521513753), Particle((5,2.768438569482849),-11.591037521513753), Particle((4,1.3399975573518912),-11.591037521513753), Particle((5,1.1792835858615431),-11.591037521513753), Particle((5,1.989491156206883),-11.591037521513753), Particle((4,0.7825254987152054),-11.591037521513753), Particle((5,2.7113936834028793),-11.591037521513753), Particle((5,3.7615196800240387),-11.591037521513753), Particle((4,1.6833300961124709),-11.591037521513753), Particle((5,2.749183220798113),-11.591037521513753), Particle((5,2.1074062883430202),-11.591037521513...

val modEmp = mod.empirical
// modEmp: Vector[(Int, Double)] = Vector((4,3.243786594839479), (4,1.5090869158886693), (4,1.280656912383482), (5,2.0616356908358195), (5,3.475433097869503), (5,1.887582611202514), (5,2.8268877720514745), (5,0.9193261688050818), (4,1.7063629502805908), (5,2.116414832864841), (5,3.775508828984636), (5,2.6774941123762814), (5,2.937859946593459), (5,1.2047689975166402), (5,2.5658806161572656), (5,1.925890364268593), (4,1.0194093176888832), (5,1.883288825936725), (5,4.9503779454422965), (5,0.9045613180858916), (4,1.5795027943928661), (5,1.925890364268593), (5,2.198539449287062), (5,1.791363956348445), (5,0.9853760689818026), (4,1.6541388923071607), (5,2.599899960899971), (4,1.8904423810277957), (5,3.8983183765907836), (5,1.9242319515895554), (5,2.8268877720514745), (4,1.772120802027519), (5,2...

meanVar(modEmp map (_._1.toDouble)) // count
// res2: breeze.stats.meanAndVariance.MeanAndVariance = MeanAndVariance(4.670000000000004,0.23521739130434777,300)

meanVar(modEmp map (_._2)) // tau
// res3: breeze.stats.meanAndVariance.MeanAndVariance = MeanAndVariance(1.9678279101913874,0.9603971613375548,300)

I’ve included this mainly as an example of inference for a discrete-valued parameter. There are people out there who will tell you that discrete parameters are bad/evil/impossible. This isn’t true – discrete parameters are cool!

Linear model

Because our PPL is embedded, we can take full advantage of the power of the host programming language to build our models. Let’s explore this in the context of Bayesian estimation of a linear model. We’ll start with some data.

val x = List(1.0,2,3,4,5,6)
// x: List[Double] = List(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

val y = List(3.0,2,4,5,5,6)
// y: List[Double] = List(3.0, 2.0, 4.0, 5.0, 5.0, 6.0)

val xy = x zip y
// xy: List[(Double, Double)] = List((1.0,3.0), (2.0,2.0), (3.0,4.0), (4.0,5.0), (5.0,5.0), (6.0,6.0))

Now, our (simple) linear regression model will be parameterised by an intercept, alpha, a slope, beta, and a residual variance, v. So, for convenience, let’s define an ADT representing a particular linear model.

case class Param(alpha: Double, beta: Double, v: Double)
// defined class Param

Now we can define a prior distribution over models as follows.

val prior = for {
  alpha <- Normal(0,10)
  beta <- Normal(0,4)
  v <- Gamma(1,0.1)
} yield Param(alpha, beta, v)
// prior: Wrapped.Prob[Param] = Empirical(Vector(Particle(Param(-2.392517550699654,-3.7516090283880095,1.724680963054379),0.0), Particle(Param(7.60982717067903,-1.4318199629361292,2.9436745225038545),0.0), Particle(Param(-1.0281832158124837,-0.2799562317845073,4.05125312048092),0.0), Particle(Param(-1.0509321093485073,-2.4733837587060448,0.5856868459456287),0.0), Particle(Param(7.678898742733517,0.15616204936412104,5.064540017623097),0.0), Particle(Param(-3.392028985658713,-0.694412176170572,7.452625596437611),0.0), Particle(Param(3.0310535934425324,-2.97938526497514,2.138446100857938),0.0), Particle(Param(3.016959696424399,1.3370878561954143,6.18957854813488),0.0), Particle(Param(2.6956505371497066,1.058845844793446,5.257973123790336),0.0), Particle(Param(1.496225540527873,-1.573936445746...

Since our language doesn’t include any direct syntactic support for fitting regression models, we can define our own function for conditioning a distribution over models on a data point, which we can then apply to our prior as a fold over the available data.

def addPoint(current: Prob[Param], obs: (Double, Double)): Prob[Param] = for {
    p <- current
    (x, y) = obs
    _ <- Normal(p.alpha + p.beta * x, p.v).fitQ(y)
  } yield p
// addPoint: (current: Wrapped.Prob[Param], obs: (Double, Double))Wrapped.Prob[Param]

val mod = xy.foldLeft(prior)(addPoint(_,_)).empirical
// mod: Vector[Param] = Vector(Param(1.4386051853067798,0.8900831186754122,4.185564696221981), Param(0.5530582357040271,1.1296886766045509,3.468527573093037), Param(0.6302560079049571,0.9396563485293532,3.7044543917875927), Param(3.68291303096638,0.4781372802435529,5.151665328789926), Param(3.016959696424399,0.4438016738989412,1.9988914122633519), Param(3.016959696424399,0.4438016738989412,1.9988914122633519), Param(0.6302560079049571,0.9396563485293532,3.7044543917875927), Param(0.6302560079049571,0.9396563485293532,3.7044543917875927), Param(3.68291303096638,0.4781372802435529,5.151665328789926), Param(3.016959696424399,0.4438016738989412,1.9988914122633519), Param(0.6302560079049571,0.9396563485293532,3.7044543917875927), Param(0.6302560079049571,0.9396563485293532,3.7044543917875927), ...

meanVar(mod map (_.alpha))
// res4: breeze.stats.meanAndVariance.MeanAndVariance = MeanAndVariance(1.5740812481283812,1.893684802867127,300)

meanVar(mod map (_.beta))
// res5: breeze.stats.meanAndVariance.MeanAndVariance = MeanAndVariance(0.7690238868623273,0.1054479268115053,300)

meanVar(mod map (_.v))
// res6: breeze.stats.meanAndVariance.MeanAndVariance = MeanAndVariance(3.5240853748668695,2.793386340338213,300)

We could easily add syntactic support to our language to enable the fitting of regression-style models, as is done in Rainier, of which more later.

Dynamic generalised linear model

The previous examples have been fairly simple, so let’s finish with something a bit less trivial. Our language is quite flexible enough to allow the analysis of a dynamic generalised linear model (DGLM). Here we’ll fit a Poisson DGLM with a log-link and a simple Brownian state evolution. More complex models are more-or-less similarly straightforward. The model is parameterised by an initial state, state0, and and evolution variance, w.

val data = List(2,1,0,2,3,4,5,4,3,2,1)
// data: List[Int] = List(2, 1, 0, 2, 3, 4, 5, 4, 3, 2, 1)

val prior = for {
  w <- Gamma(1, 1)
  state0 <- Normal(0.0, 2.0)
} yield (w, List(state0))
// prior: Wrapped.Prob[(Double, List[Double])] = Empirical(Vector(Particle((0.12864918092587044,List(-2.862479260552014)),0.0), Particle((1.1706344622093179,List(1.6138397233532091)),0.0), Particle((0.757288087950638,List(-0.3683499919402798)),0.0), Particle((2.755201217523856,List(-0.6527488751780317)),0.0), Particle((0.7535085397802043,List(0.5135562407906502)),0.0), Particle((1.1630726564525629,List(0.9703146201262348)),0.0), Particle((1.0080345715326213,List(-0.375686732266234)),0.0), Particle((4.603723117526974,List(-1.6977366375222938)),0.0), Particle((0.2870669117815037,List(2.2732160435099433)),0.0), Particle((2.454675218313211,List(-0.4148287542786906)),0.0), Particle((0.3612534201761152,List(-1.0099270904161748)),0.0), Particle((0.29578453393473114,List(-2.4938128878051966)),0.0)...

We can define a function to create a new hidden state, prepend it to the list of hidden states, and condition on the observed value at that time point as follows.

def addTimePoint(current: Prob[(Double, List[Double])],
  obs: Int): Prob[(Double, List[Double])] = for {
  tup <- current
  (w, states) = tup
  os = states.head
  ns <- Normal(os, w)
  _ <- Poisson(math.exp(ns)).fitQ(obs)
} yield (w, ns :: states)
// addTimePoint: (current: Wrapped.Prob[(Double, List[Double])], obs: Int)Wrapped.Prob[(Double, List[Double])]

We then run our (augmented state) particle filter as a fold over the time series.

val mod = data.foldLeft(prior)(addTimePoint(_,_)).empirical
// mod: Vector[(Double, List[Double])] = Vector((0.053073252551193446,List(0.8693030057529023, 1.2746526177834938, 1.020307245610461, 1.106341696651584, 1.070777529635013, 0.8749041525303247, 0.9866999164354662, 0.4082577920509255, 0.06903234462140699, -0.018835642776197814, -0.16841912034400547, -0.08919045681401294)), (0.0988871875952762,List(-0.24241948109998607, 0.09321618969352086, 0.9650532206325375, 1.1738734442767293, 1.2272325310228442, 0.9791695328246326, 0.5576319082578128, -0.0054280215024367084, 0.4256621012454391, 0.7486862644576158, 0.8193517409118243, 0.5928750312493785)), (0.16128799384962295,List(-0.30371187329667104, -0.3976854602292066, 0.5869357473774455, 0.9881090696832543, 1.2095181380307558, 0.7211231597865506, 0.8085486452269925, 0.2664373341459165, -0.627344024142...

meanVar(mod map (_._1)) // w
// res7: breeze.stats.meanAndVariance.MeanAndVariance = MeanAndVariance(0.29497487517435844,0.0831412016262515,300)

meanVar(mod map (_._2.reverse.head)) // state0 (initial state)
// res8: breeze.stats.meanAndVariance.MeanAndVariance = MeanAndVariance(0.04617218427664018,0.372844704533101,300)

meanVar(mod map (_._2.head)) // stateN (final state)
// res9: breeze.stats.meanAndVariance.MeanAndVariance = MeanAndVariance(0.4937178761565612,0.2889287607470016,300)

Summary, conclusions, and further reading

So, we’ve seen how we can build a fully functional, general-purpose, compositional, monadic PPL from scratch in 50 lines of code, and we’ve seen how we can use it to solve real, analytically intractable Bayesian inference problems of non-trivial complexity. Of course, there are many limitations to using exactly this PPL implementation in practice. The algorithm becomes intolerably slow for deeply nested models, and uses unreasonably large amounts of RAM for large numbers of particles. It also suffers from a particle degeneracy problem if there are too many conditioning events. But it is important to understand that these are all deficiencies of the naive inference algorithm used, not the PPL itself. The PPL is flexible and compositional and can be used to build models of arbitrary size and complexity – it just needs to be underpinned by a better, more efficient, inference algorithm. Rainier is a Scala library I’ve blogged about previously which uses a very similar PPL to the one described here, but is instead underpinned by a fast, efficient, HMC algorithm. With my student Jonny Law, we have recently arXived a paper on Functional probabilistic programming for scalable Bayesian modelling, discussing some of these issues, and exploring the compositional nature of monadic PPLs (somewhat glossed over in this post).

Since the same PPL can be underpinned by different inference algorithms encapsulated as probability monads, an obvious question is whether it is possible to abstract the PPL away from the inference algorithm implementation. Of course, the answer is “yes”, and this has been explored to great effect in papers such as Practical probabilistic programming with monads and Functional programming for modular Bayesian inference. Note that they use the cond approach to conditioning, which looks a bit unwieldy, but is equivalent to fitting. As well as allowing alternative inference algorithms to be applied to the same probabilistic program, it also enables the composing of inference algorithms – for example, composing a MH algorithm with an SMC algorithm in order to get a PMMH algorithm. The ideas are implemented in an embedded DSL for Haskell, monad-bayes. If you are not used to Haskell, the syntax will probably seem a bit more intimidating than Scala’s, but the semantics are actually quite similar, with the main semantic difference being that Scala is strictly evaluated by default, whereas Haskell is lazily evaluated by default. Both languages support both lazy and strict evaluation – the difference relates simply to default behaviour, but is important nevertheless.

Papers

Software

  • min-ppl – code associated with this blog post
  • Rainier – a more efficient PPL with similar syntax
  • monad-bayes – a Haskell library exploring related ideas

Stochastic reaction-diffusion modelling

Introduction

There is a fairly large literature on reaction-diffusion modelling using partial differential equations (PDEs). There is also a fairly large literature on stochastic modelling of coupled chemical reactions, which account for the discreteness of reacting species at low concentrations. There is some literature on combining the two, to form stochastic reaction-diffusion systems, but much less.

In this post we will look at one approach to the stochastic reaction-diffusion problem, based on an underlying stochastic process often described by the reaction diffusion master equation (RDME). We will start by generating exact realisations from this process using the spatial Gillespie algorithm, before switching to a continuous stochastic approximation often known as the spatial chemical Langevin equation (spatial CLE). For fine discretisations, this spatial CLE is just an explicit numerical scheme for an associated reaction-diffusion stochastic partial differential equation (SPDE), and we can easily contrast such SPDE dynamics with their deterministic PDE approximation. We will investigate using simulation, based on my Scala library, scala-smfsb, which accompanies the third edition of my textbook, Stochastic modelling for systems biology, as discussed in previous posts.

All of the code used to generate the plots and movies in this post is available in my blog repo, and is very simple to build and run.

The Lotka-Volterra reaction network

Exact simulation from the RDME

My favourite toy coupled chemical reaction network is the Lotka-Volterra predator-prey system, presented as the three reactions

X \longrightarrow 2X
X + Y \longrightarrow 2Y
Y \longrightarrow \emptyset

with X representing the prey species and Y the predator. I showed how to simulate realisations from this process using the Scala library in the previous post. Here we will consider simulation of this model in 2d, and simulate exact realisation from the appropriate RDME using the spatial Gillespie algorithm. Full runnable code for this simulation is here, but the key lines are:

val r = 100; val c = 120
val model = SpnModels.lv[IntState]()
val step = Spatial.gillespie2d(model, DenseVector(0.6, 0.6), maxH=1e12)
val x00 = DenseVector(0, 0)
val x0 = DenseVector(50, 100)
val xx00 = PMatrix(r, c, Vector.fill(r*c)(x00))
val xx0 = xx00.updated(c/2, r/2, x0)
val s = Stream.iterate(xx0)(step(_,0.0,0.1))

which sets up an infinite lazy Stream of states on a 100×120 grid over time steps of 0.1 units with diffusion rates of 0.6 for both species. We can then map this to a stream of images and visualise it using my scala-view library (described in this post). Running gives the following output:

Movie

The above image is the final frame of a movie which can be viewed by clicking on the image. In the simulation, blue represents the prey species, X, and red represents the predator, Y. The simulation is initialised with a few prey and predators in the central pixel. At each time step of the simulation, either a reaction or a diffusion event may occur. If diffusion occurs, an individual moves from its current location to one of the four adjacent pixels. This algorithm is extremely computationally intensive, however well it is implemented. The implementation used here (using the function Spatial.gillespie2d in the scala-smfsb library) is quite inefficient. A more efficient implementation would use the next subvolume method or similar algorithm. But since every reaction event is simulated sequentially, this algorithm is always going to be intolerably slow for most interesting problems.

The spatial CLE

The spatial CLE effectively approximates the true RDME dynamics with a set of coupled stochastic differential equations (SDEs) on the spatial grid. This can be interpreted as an explicit scheme for numerically integrating an SPDE. But this numerical scheme is much more efficient, allowing sensible time-stepping of the process, and vectorises and parallelises nicely. The details are in my book, but the Scala implementation is here. Diffusion is implemented efficiently and in parallel using the comonadic approach that I’ve described previously. We can quickly and easily generate large simulations using the spatial CLE. Here is a movie generated on a 250×300 grid.

Movie

Again, clicking on the frame should give the movie. We see that although the quantitative details are slightly different to the exact algorithm, the essential qualitative behaviour of the system is captured well by the spatial CLE. Full code for this simulation is here.

Reaction-diffusion PDE

If we remove all of the noise terms from the spatial CLE, we get a set of coupled ODEs, which again, may be interpreted as a numerical scheme for integrating a reaction-diffusion PDE model. Below are the dynamics on the same 250×300 grid.

Movie

It seems a bit harsh to describe a reaction-diffusion PDE as “boring”, but it certainly isn’t as interesting as the stochastic dynamics. Also, it has qualitatively quite different behaviour to the stochastic models, with wavefronts being less pronounced and less well separated. The code for this one is here.

Other initialisations

Instead of just seeding the simulation with some individuals in the central pixel, we can initialise 3 pixels. We can look first at a spatial CLE simulation.

Movie

Code here.

We can look at the same problem, but now using a PDE.

Movie

Code here.

Alternatively, we can initialise every pixel independently with random numbers of predator and prey. A movie for this is given below, following a short warm-up.

Movie

Code here.

Again, we can look at the corresponding deterministic integration.

Movie

Code here.

The SIR model

Let’s now turn attention to a spatial epidemic process model, the spatial susceptible-infectious-recovered model. Again, we’ll start from the discrete reaction formulation.

S + I \longrightarrow 2I
I \longrightarrow R

I’ll add this model to the next release of scala-smfsb, but in the meantime we can easily define it ourselves with:

def sir[S: State](p: DenseVector[Double] = DenseVector(0.1, 0.5)): Spn[S] =
  UnmarkedSpn[S](
    List("S", "I", "R"),
    DenseMatrix((1, 1, 0), (0, 1, 0)),
    DenseMatrix((0, 2, 0), (0, 0, 1)),
    (x, t) => {
      val xd = x.toDvd
      DenseVector(
        xd(0) * xd(1) * p(0), xd(1) * p(1)
      )}
  )

We can seed a simulation with a few infectious individuals in the centre of a roughly homogeneous population of susceptibles.

Spatial CLE

This time we’ll skip the exact simulation, since it’s very slow, and go straight to the spatial CLE. A simulation on a 250×300 grid is given below.

Movie

Here, green represents S, red I and blue R. In this simulation, I diffuses more slowly than S, and R doesn’t diffuse at all.
Code here.

PDE model

If we ditch the noise to get a reaction-diffusion PDE model, the dynamics are as follows.

Movie

Again, we see that the deterministic model is quite different to the stochastic version, and kind-of boring. Code here.

Further information

All of the code used to generate the plots and movies in this post is available in an easily runnable form in my blog repo. It is very easy to adapt the examples to vary parameters and initial conditions, and to study other reaction systems. Further details relating to stochastic reaction-diffusion modelling based on the RDME can be found in Chapter 9 of my textbook, Stochastic modelling for systems biology, third edition.

The scala-smfsb library

In the previous post I gave a very quick introduction to the smfsb R package. As mentioned in that post, although good for teaching and learning, R isn’t a great language for serious scientific computing or computational statistics. So for the publication of the third edition of my textbook, Stochastic modelling for systems biology, I have created a library in the Scala programming language replicating the functionality provided by the R package. Here I will give a very quick introduction to the scala-smfsb library. Some familiarity with both Scala and the smfsb R package will be helpful, but is not strictly necessary. Note that the library relies on the Scala Breeze library for linear algebra and probability distributions, so some familiarity with that library can also be helpful.

Setup

To follow the along you need to have Sbt installed, and this in turn requires a recent JDK. If you are new to Scala, you may find the setup page for my Scala course to be useful, but note that on many Linux systems it can be as simple as installing the packages openjdk-8-jdk and sbt.

Once you have Sbt installed, you should be able to run it by entering sbt at your OS command line. You now need to use Sbt to create a Scala REPL with a dependency on the scala-smfsb library. There are many ways to do this, but if you are new to Scala, the simplest way is probably to start up Sbt from an empty or temporary directory (which doesn’t contain any Scala code), and then paste the following into the Sbt prompt:

set libraryDependencies += "com.github.darrenjw" %% "scala-smfsb" % "0.6"
set libraryDependencies += "org.scalanlp" %% "breeze-viz" % "0.13.2"
set scalaVersion := "2.12.6"
set scalacOptions += "-Yrepl-class-based"
console

The first time you run this it will take a little while to download and cache various library dependencies. But everything is cached, so it should be much quicker in future. When it is finished, you should have a Scala REPL ready to enter Scala code.

An introduction to scala-smfsb

It should be possible to type or copy-and-paste the commands below one-at-a-time into the Scala REPL. We need to start with a few imports.

import smfsb._
import breeze.linalg.{Vector => BVec, _}
import breeze.numerics._
import breeze.plot._

Note that I’ve renamed Breeze’s Vector type to BVec to avoid clashing with that in the Scala standard library. We are now ready to go.

Simulating models

Let’s begin by instantiating a Lotka-Volterra model, simulating a single realisation of the process, and then plotting it.

// Simulate LV with Gillespie
val model = SpnModels.lv[IntState]()
val step = Step.gillespie(model)
val ts = Sim.ts(DenseVector(50, 100), 0.0, 20.0, 0.05, step)
Sim.plotTs(ts, "Gillespie simulation of LV model with default parameters")

The library comes with a few other models. There’s a Michaelis-Menten enzyme kinetics model:

// Simulate other models with Gillespie
val stepMM = Step.gillespie(SpnModels.mm[IntState]())
val tsMM = Sim.ts(DenseVector(301,120,0,0), 0.0, 100.0, 0.5, stepMM)
Sim.plotTs(tsMM, "Gillespie simulation of the MM model")

and an auto-regulatory genetic network model, for example.

val stepAR = Step.gillespie(SpnModels.ar[IntState]())
val tsAR = Sim.ts(DenseVector(10, 0, 0, 0, 0), 0.0, 500.0, 0.5, stepAR)
Sim.plotTs(tsAR, "Gillespie simulation of the AR model")

If you know the book and/or the R package, these models should all be familiar.
We are not restricted to exact stochastic simulation using the Gillespie algorithm. We can use an approximate Poisson time-stepping algorithm.

// Simulate LV with other algorithms
val stepPts = Step.pts(model)
val tsPts = Sim.ts(DenseVector(50, 100), 0.0, 20.0, 0.05, stepPts)
Sim.plotTs(tsPts, "Poisson time-step simulation of the LV model")

Alternatively, we can instantiate the example models using a continuous state rather than a discrete state, and then simulate using algorithms based on continous approximations, such as Euler-Maruyama simulation of a chemical Langevin equation (CLE) approximation.

val stepCle = Step.cle(SpnModels.lv[DoubleState]())
val tsCle = Sim.ts(DenseVector(50.0, 100.0), 0.0, 20.0, 0.05, stepCle)
Sim.plotTs(tsCle, "Euler-Maruyama/CLE simulation of the LV model")

If we want to ignore noise temporarily, there’s also a simple continuous deterministic Euler integrator built-in.

val stepE = Step.euler(SpnModels.lv[DoubleState]())
val tsE = Sim.ts(DenseVector(50.0, 100.0), 0.0, 20.0, 0.05, stepE)
Sim.plotTs(tsE, "Continuous-deterministic Euler simulation of the LV model")

Spatial stochastic reaction-diffusion simulation

We can do 1d reaction-diffusion simulation with something like:

val N = 50; val T = 40.0
val model = SpnModels.lv[IntState]()
val step = Spatial.gillespie1d(model,DenseVector(0.8, 0.8))
val x00 = DenseVector(0, 0)
val x0 = DenseVector(50, 100)
val xx00 = Vector.fill(N)(x00)
val xx0 = xx00.updated(N/2,x0)
val output = Sim.ts(xx0, 0.0, T, 0.2, step)
Spatial.plotTs1d(output)

For 2d simulation, we use PMatrix, a comonadic matrix/image type defined within the library, with parallelised map and coflatMap (cobind) operations. See my post on comonads for scientific computing for further details on the concepts underpinning this, though note that it isn’t necessary to understand comonads to use the library.

val r = 20; val c = 30
val model = SpnModels.lv[DoubleState]()
val step = Spatial.cle2d(model, DenseVector(0.6, 0.6), 0.05)
val x00 = DenseVector(0.0, 0.0)
val x0 = DenseVector(50.0, 100.0)
val xx00 = PMatrix(r, c, Vector.fill(r*c)(x00))
val xx0 = xx00.updated(c/2, r/2, x0)
val output = step(xx0, 0.0, 8.0)
val f = Figure("2d LV reaction-diffusion simulation")
val p0 = f.subplot(2, 1, 0)
p0 += image(PMatrix.toBDM(output map (_.data(0))))
val p1 = f.subplot(2, 1, 1)
p1 += image(PMatrix.toBDM(output map (_.data(1))))

Bayesian parameter inference

The library also includes functions for carrying out parameter inference for stochastic dynamical systems models, using particle MCMC, ABC and ABC-SMC. See the examples directory for further details.

Next steps

Having worked through this post, the next step is to work through the tutorial. There is some overlap of content with this blog post, but the tutorial goes into more detail regarding the basics. It also finishes with suggestions for how to proceed further.

Source

This post started out as a tut document (the Scala equivalent of an RMarkdown document). The source can be found here.

The smfsb R package

Introduction

In the previous post I gave a brief introduction to the third edition of my textbook, Stochastic modelling for systems biology. The algorithms described in the book are illustrated by implementations in R. These implementations are collected together in an R package on CRAN called smfsb. This post will provide a brief introduction to the package and its capabilities.

Installation

The package is on CRAN – see the CRAN package page for details. So the simplest way to install it is to enter

install.packages("smfsb")

at the R command prompt. This will install the latest version that is on CRAN. Once installed, the package can be loaded with

library(smfsb)

The package is well-documented, so further information can be obtained with the usual R mechanisms, such as

vignette(package="smfsb")
vignette("smfsb")
help(package="smfsb")
?StepGillespie
example(StepCLE1D)

The version of the package on CRAN is almost certainly what you want. However, the package is developed on R-Forge – see the R-Forge project page for details. So the very latest version of the package can always be installed with

install.packages("smfsb", repos="http://R-Forge.R-project.org")

if you have a reason for wanting it.

A brief tutorial

The vignette gives a quick introduction the the library, which I don’t need to repeat verbatim here. If you are new to the package, I recommend working through that before continuing. Here I’ll concentrate on some of the new features associated with the third edition.

Simulating stochastic kinetic models

Much of the book is concerned with the simulation of stochastic kinetic models using exact and approximate algorithms. Although the primary focus of the text is the application to modelling of intra-cellular processes, the methods are also appropriate for population modelling of ecological and epidemic processes. For example, we can start by simulating a simple susceptible-infectious-recovered (SIR) disease epidemic model.

set.seed(2)
data(spnModels)

stepSIR = StepGillespie(SIR)
plot(simTs(SIR$M, 0, 8, 0.05, stepSIR),
  main="Exact simulation of the SIR model")

Exact simulation of the SIR epidemic model
The focus of the text is stochastic simulation of discrete models, so that is the obvious place to start. But there is also support for continuous deterministic simulation.

plot(simTs(SIR$M, 0, 8, 0.05, StepEulerSPN(SIR)),
  main="Euler simulation of the SIR model")

Euler simulation of the SIR model
My favourite toy population dynamics model is the Lotka-Volterra (LV) model, so I tend to use this frequently as a running example throughout the book. We can simulate this (exactly) as follows.

stepLV = StepGillespie(LV)
plot(simTs(LV$M, 0, 30, 0.2, stepLV),
  main="Exact simulation of the LV model")

Exact simulation of the Lotka-Volterra model

Stochastic reaction-diffusion modelling

The first two editions of the book were almost exclusively concerned with well-mixed systems, where spatial effects are ignorable. One of the main new features of the third edition is the inclusion of a new chapter on spatially extended systems. The focus is on models related to the reaction diffusion master equation (RDME) formulation, rather than individual particle-based simulations. For these models, space is typically divided into a regular grid of voxels, with reactions taking place as normal within each voxel, and additional reaction events included, corresponding to the diffusion of particles to adjacent voxels. So to specify such models, we just need an initial condition, a reaction model, and diffusion coefficients (one for each reacting species). So, we can carry out exact simulation of an RDME model for a 1D spatial domain as follows.

N=20; T=30
x0=matrix(0, nrow=2, ncol=N)
rownames(x0) = c("x1", "x2")
x0[,round(N/2)] = LV$M
stepLV1D = StepGillespie1D(LV, c(0.6, 0.6))
xx = simTs1D(x0, 0, T, 0.2, stepLV1D, verb=TRUE)
image(xx[1,,], main="Prey", xlab="Space", ylab="Time")

Discrete 1D simulation of the LV model

image(xx[2,,], main="Predator", xlab="Space", ylab="Time")

Discrete 1D simulation of the LV model
Exact simulation of discrete stochastic reaction diffusion systems is very expensive (and the reference implementation provided in the package is very inefficient), so we will often use diffusion approximations based on the CLE.

stepLV1DC = StepCLE1D(LV, c(0.6, 0.6))
xx = simTs1D(x0, 0, T, 0.2, stepLV1D)
image(xx[1,,], main="Prey", xlab="Space", ylab="Time")

Spatial CLE simulation of the 1D LV model

image(xx[2,,], main="Predator", xlab="Space", ylab="Time")

Spatial CLE simulation of the 1D LV model
We can think of this algorithm as an explicit numerical integration of the obvious SPDE approximation to the exact model.

The package also includes support for simulation of 2D systems. Again, we can use the Spatial CLE to speed things up.

m=70; n=50; T=10
data(spnModels)
x0=array(0, c(2,m,n))
dimnames(x0)[[1]]=c("x1", "x2")
x0[,round(m/2),round(n/2)] = LV$M
stepLV2D = StepCLE2D(LV, c(0.6,0.6), dt=0.05)
xx = simTs2D(x0, 0, T, 0.5, stepLV2D)
N = dim(xx)[4]
image(xx[1,,,N],main="Prey",xlab="x",ylab="y")

Spatial CLE simulation of the 2D LV model

image(xx[2,,,N],main="Predator",xlab="x",ylab="y")

Spatial CLE simulation of the 2D LV model

Bayesian parameter inference

Although much of the book is concerned with the problem of forward simulation, the final chapters are concerned with the inverse problem of estimating model parameters, such as reaction rate constants, from data. A computational Bayesian approach is adopted, with the main emphasis being placed on “likelihood free” methods, which rely on forward simulation to avoid explicit computation of sample path likelihoods. The second edition included some rudimentary code for a likelihood free particle marginal Metropolis-Hastings (PMMH) particle Markov chain Monte Carlo (pMCMC) algorithm. The third edition includes a more complete and improved implementation, in addition to approximate inference algorithms based on approximate Bayesian computation (ABC).

The key function underpinning the PMMH approach is pfMLLik, which computes an estimate of marginal model log-likelihood using a (bootstrap) particle filter. There is a new implementation of this function with the third edition. There is also a generic implementation of the Metropolis-Hastings algorithm, metropolisHastings, which can be combined with pfMLLik to create a PMMH algorithm. PMMH algorithms are very slow, but a full demo of how to use these functions for parameter inference is included in the package and can be run with

demo(PMCMC)

Simple rejection-based ABC methods are facilitated by the (very simple) function abcRun, which just samples from a prior and then carries out independent simulations in parallel before computing summary statistics. A simple illustration of the use of the function is given below.

data(LVdata)
rprior <- function() { exp(c(runif(1, -3, 3),runif(1,-8,-2),runif(1,-4,2))) }
rmodel <- function(th) { simTs(c(50,100), 0, 30, 2, stepLVc, th) }
sumStats <- identity
ssd = sumStats(LVperfect)
distance <- function(s) {
    diff = s - ssd
    sqrt(sum(diff*diff))
}
rdist <- function(th) { distance(sumStats(rmodel(th))) }
out = abcRun(10000, rprior, rdist)
q=quantile(out$dist, c(0.01, 0.05, 0.1))
print(q)
##       1%       5%      10% 
## 772.5546 845.8879 881.0573
accepted = out$param[out$dist < q[1],]
print(summary(accepted))
##        V1                V2                  V3         
##  Min.   :0.06498   Min.   :0.0004467   Min.   :0.01887  
##  1st Qu.:0.16159   1st Qu.:0.0012598   1st Qu.:0.04122  
##  Median :0.35750   Median :0.0023488   Median :0.14664  
##  Mean   :0.68565   Mean   :0.0046887   Mean   :0.36726  
##  3rd Qu.:0.86708   3rd Qu.:0.0057264   3rd Qu.:0.36870  
##  Max.   :4.76773   Max.   :0.0309364   Max.   :3.79220
print(summary(log(accepted)))
##        V1                V2               V3         
##  Min.   :-2.7337   Min.   :-7.714   Min.   :-3.9702  
##  1st Qu.:-1.8228   1st Qu.:-6.677   1st Qu.:-3.1888  
##  Median :-1.0286   Median :-6.054   Median :-1.9198  
##  Mean   :-0.8906   Mean   :-5.877   Mean   :-1.9649  
##  3rd Qu.:-0.1430   3rd Qu.:-5.163   3rd Qu.:-0.9978  
##  Max.   : 1.5619   Max.   :-3.476   Max.   : 1.3329

Naive rejection-based ABC algorithms are notoriously inefficient, so the library also includes an implementation of a more efficient, sequential version of ABC, often known as ABC-SMC, in the function abcSmc. This function requires specification of a perturbation kernel to “noise up” the particles at each algorithm sweep. Again, the implementation is parallel, using the parallel package to run the required simulations in parallel on multiple cores. A simple illustration of use is given below.

rprior <- function() { c(runif(1, -3, 3), runif(1, -8, -2), runif(1, -4, 2)) }
dprior <- function(x, ...) { dunif(x[1], -3, 3, ...) + 
    dunif(x[2], -8, -2, ...) + dunif(x[3], -4, 2, ...) }
rmodel <- function(th) { simTs(c(50,100), 0, 30, 2, stepLVc, exp(th)) }
rperturb <- function(th){th + rnorm(3, 0, 0.5)}
dperturb <- function(thNew, thOld, ...){sum(dnorm(thNew, thOld, 0.5, ...))}
sumStats <- identity
ssd = sumStats(LVperfect)
distance <- function(s) {
    diff = s - ssd
    sqrt(sum(diff*diff))
}
rdist <- function(th) { distance(sumStats(rmodel(th))) }
out = abcSmc(5000, rprior, dprior, rdist, rperturb,
    dperturb, verb=TRUE, steps=6, factor=5)
## 6 5 4 3 2 1
print(summary(out))
##        V1                V2               V3        
##  Min.   :-2.9961   Min.   :-7.988   Min.   :-3.999  
##  1st Qu.:-1.9001   1st Qu.:-6.786   1st Qu.:-3.428  
##  Median :-1.2571   Median :-6.167   Median :-2.433  
##  Mean   :-1.0789   Mean   :-6.014   Mean   :-2.196  
##  3rd Qu.:-0.2682   3rd Qu.:-5.261   3rd Qu.:-1.161  
##  Max.   : 2.1128   Max.   :-2.925   Max.   : 1.706

We can then plot some results with

hist(out[,1],30,main="log(c1)")

ABC-SMC posterior for the LV model

hist(out[,2],30,main="log(c2)")

ABC-SMC posterior for the LV model

hist(out[,3],30,main="log(c3)")

ABC-SMC posterior for the LV model

Although the inference methods are illustrated in the book in the context of parameter inference for stochastic kinetic models, their implementation is generic, and can be used with any appropriate parameter inference problem.

The smfsbSBML package

smfsbSBML is another R package associated with the third edition of the book. This package is not on CRAN due to its dependency on a package not on CRAN, and hence is slightly less straightforward to install. Follow the available installation instructions to install the package. Once installed, you should be able to load the package with

library(smfsbSBML)

This package provides a function for reading in SBML files and parsing them into the simulatable stochastic Petri net (SPN) objects used by the main smfsb R package. Examples of suitable SBML models are included in the main smfsb GitHub repo. An appropriate SBML model can be read and parsed with a command like:

model = sbml2spn("mySbmlModel.xml")

The resulting value, model is an SPN object which can be passed in to simulation functions such as StepGillespie for constructing stochastic simulation algorithms.

Other software

In addition to the above R packages, I also have some Python scripts for converting between SBML and the SBML-shorthand notation I use in the book. See the SBML-shorthand page for further details.

Although R is a convenient language for teaching and learning about stochastic simulation, it isn’t ideal for serious research-level scientific computing or computational statistics. So for the third edition of the book I have also developed scala-smfsb, a library written in the Scala programming language, which re-implements all of the models and algorithms from the third edition of the book in Scala, a fast, efficient, strongly-typed, compiled, functional programming language. I’ll give an introduction to this library in a subsequent post, but in the meantime, it is already well documented, so see the scala-smfsb repo for further details, including information on installation, getting started, a tutorial, examples, API docs, etc.

Source

This blog post started out as an RMarkdown document, the source of which can be found here.

Stochastic Modelling for Systems Biology, third edition

The third edition of my textbook, Stochastic Modelling for Systems Biology has recently been published by Chapman & Hall/CRC Press. The book has ISBN-10 113854928-2 and ISBN-13 978-113854928-9. It can be ordered from CRC Press, Amazon.com, Amazon.co.uk and similar book sellers.

I was fairly happy with the way that the second edition, published in 2011, turned out, and so I haven’t substantially re-written any of the text for the third edition. Instead, I’ve concentrated on adding in new material and improving the associated on-line resources. Those on-line resources are all free and open source, and hence available to everyone, irrespective of whether you have a copy of the new edition. I’ll give an introduction to those resources below (and in subsequent posts). The new material can be briefly summarised as follows:

  • New chapter on spatially extended systems, covering the spatial Gillespie algorithm for reaction diffusion master equation (RDME) models in 1- and 2-d, the next subvolume method, spatial CLE, scaling issues, etc.
  • Significantly expanded chapter on inference for stochastic kinetic models from data, covering approximate methods of inference (ABC), including ABC-SMC. The material relating to particle MCMC has also been improved and extended.
  • Updated R package, including code relating to all of the new material
  • New R package for parsing SBML models into simulatable stochastic Petri net models
  • New software library, written in Scala, replicating most of the functionality of the R packages in a fast, compiled, strongly typed, functional language

New content

Although some minor edits and improvements have been made throughout the text, there are two substantial new additions to the text in this new edition. The first is an entirely new chapter on spatially extended systems. The first two editions of the text focused on the implications of discreteness and stochasticity in chemical reaction systems, but maintained the well-mixed assumption throughout. This is a reasonable first approach, since discreteness and stochasticity are most pronounced in very small volumes where diffusion should be rapid. In any case, even these non-spatial models have very interesting behaviour, and become computationally challenging very quickly for non-trivial reaction networks. However, we know that, in fact, the cell is a very crowded environment, and so even at small spatial scales, many interesting processes are diffusion limited. It therefore seems appropriate to dedicate one chapter (the new Chapter 9) to studying some of the implications of relaxing the well-mixed assumption. Entire books can be written on stochastic reaction-diffusion systems, so here only a brief introduction is provided, based mainly around models in the reaction-diffusion master equation (RDME) style. Exact stochastic simulation algorithms are discussed, and implementations provided in the 1- and 2-d cases, and an appropriate Langevin approximation is examined, the spatial CLE.

The second major addition is to the chapter on inference for stochastic kinetic models from data (now Chapter 11). The second edition of the book included a discussion of “likelihood free” Bayesian MCMC methods for inference, and provided a working implementation of likelihood free particle marginal Metropolis-Hastings (PMMH) for stochastic kinetic models. The third edition improves on that implementation, and discusses approximate Bayesian computation (ABC) as an alternative to MCMC for likelihood free inference. Implementation issues are discussed, and sequential ABC approaches are examined, concentrating in particular on the method known as ABC-SMC.

New software and on-line resources

Accompanying the text are new and improved on-line resources, all well-documented, free, and open source.

New website/GitHub repo

Information and materials relating to the previous editions were kept on my University website. All materials relating to this new edition are kept in a public GitHub repo: darrenjw/smfsb. This will be simpler to maintain, and will make it much easier for people to make copies of the material for use and studying off-line.

Updated R package(s)

Along with the second edition of the book I released an accompanying R package, “smfsb”, published on CRAN. This was a very popular feature, allowing anyone with R to trivially experiment with all of the models and algorithms discussed in the text. This R package has been updated, and a new version has been published to CRAN. The updates are all backwards-compatible with the version associated with the second edition of the text, so owners of that edition can still upgrade safely. I’ll give a proper introduction to the package, including the new features, in a subsequent post, but in the meantime, you can install/upgrade the package from a running R session with

install.packages("smfsb")

and then pop up a tutorial vignette with:

vignette("smfsb")

This should be enough to get you started.

In addition to the main R package, there is an additional R package for parsing SBML models into models that can be simulated within R. This package is not on CRAN, due to its dependency on a non-CRAN package. See the repo for further details.

There are also Python scripts available for converting SBML models to and from the shorthand SBML notation used in the text.

New Scala library

Another major new resource associated with the third edition of the text is a software library written in the Scala programming language. This library provides Scala implementations of all of the algorithms discussed in the book and implemented in the associated R packages. This then provides example implementations in a fast, efficient, compiled language, and is likely to be most useful for people wanting to use the methods in the book for research. Again, I’ll provide a tutorial introduction to this library in a subsequent post, but it is well-documented, with all necessary information needed to get started available at the scala-smfsb repo/website, including a step-by-step tutorial and some additional examples.