Bayesian hierarchical modelling with Rainier

Introduction

In the previous post I gave a brief introduction to Rainier, a new HMC-based probabilistic programming library/DSL for Scala. In that post I assumed that people were using the latest source version of the library. Since then, version 0.1.1 of the library has been released, so in this post I will demonstrate use of the released version of the software (using the binaries published to Sonatype), and will walk through a slightly more interesting example – a dynamic linear state space model with unknown static parameters. This is similar to, but slightly different from, the DLM example in the Rainier library. So to follow along with this post, all that is required is SBT.

An interactive session

First run SBT from an empty directory, and paste the following at the SBT prompt:

set libraryDependencies  += "com.stripe" %% "rainier-plot" % "0.1.1"
set scalaVersion := "2.12.4"
console

This should give a Scala REPL with appropriate dependencies (rainier-plot has all of the relevant transitive dependencies). We’ll begin with some imports, and then simulating some synthetic data from a dynamic linear state space model with an AR(1) latent state and Gaussian noise on the observations.

import com.stripe.rainier.compute._
import com.stripe.rainier.core._
import com.stripe.rainier.sampler._

implicit val rng = ScalaRNG(1)
val n = 60 // number of observations/time points
val mu = 3.0 // AR(1) mean
val a = 0.95 // auto-regressive parameter
val sig = 0.2 // AR(1) SD
val sigD = 3.0 // observational SD
val state = Stream.
  iterate(0.0)(x => mu + (x - mu) * a + sig * rng.standardNormal).
  take(n).toVector
val obs = state.map(_ + sigD * rng.standardNormal)

Now we have some synthetic data, let’s think about building a probabilistic program for this model. Start with a prior.

case class Static(mu: Real, a: Real, sig: Real, sigD: Real)
val prior = for {
  mu <- Normal(0, 10).param
  a <- Normal(1, 0.1).param
  sig <- Gamma(2,1).param
  sigD <- Gamma(2,2).param
  sp <- Normal(0, 50).param
} yield (Static(mu, a, sig, sigD), List(sp))

Note the use of a case class for wrapping the static parameters. Next, let’s define a function to add a state and associated observation to an existing model.

def addTimePoint(current: RandomVariable[(Static, List[Real])],
                     datum: Double) = for {
  tup <- current
  static = tup._1
  states = tup._2
  os = states.head
  ns <- Normal(((Real.one - static.a) * static.mu) + (static.a * os),
                 static.sig).param
  _ <- Normal(ns, static.sigD).fit(datum)
} yield (static, ns :: states)

Given this, we can generate the probabilistic program for our model as a fold over the data initialised with the prior.

val fullModel = obs.foldLeft(prior)(addTimePoint(_, _))

If we don’t want to keep samples for all of the variables, we can focus on the parameters of interest, wrapping the results in a Map for convenient sampling and plotting.

val model = for {
  tup <- fullModel
  static = tup._1
  states = tup._2
} yield
  Map("mu" -> static.mu,
  "a" -> static.a,
  "sig" -> static.sig,
  "sigD" -> static.sigD,
  "SP" -> states.reverse.head)

We can sample with

val out = model.sample(HMC(3), 100000, 10000 * 500, 500)

(this will take several minutes) and plot some diagnostics with

import com.cibo.evilplot.geometry.Extent
import com.stripe.rainier.plot.EvilTracePlot._

val truth = Map("mu" -> mu, "a" -> a, "sigD" -> sigD,
  "sig" -> sig, "SP" -> state(0))
render(traces(out, truth), "traceplots.png",
  Extent(1200, 1400))
render(pairs(out, truth), "pairs.png")

This generates the following diagnostic plots:

Everything looks good.

Summary

Rainier is a monadic embedded DSL for probabilistic programming in Scala. We can use standard functional combinators and for-expressions for building models to sample, and then run an efficient HMC algorithm on the resulting probability monad in order to obtain samples from the posterior distribution of the model.

See the Rainier repo for further details.

Advertisements

Monadic probabilistic programming in Scala with Rainier

Introduction

Rainier is an interesting new probabilistic programming library for Scala recently open-sourced by Stripe. Probabilistic programming languages provide a computational framework for building and fitting Bayesian models to data. There are many interesting probabilistic programming languages, and there is currently a lot of interesting innovation happening with probabilistic programming languages embedded in strongly typed functional programming languages such as Scala and Haskell. However, most such languages tend to be developed by people lacking expertise in statistics and numerics, leading to elegant, composable languages which work well for toy problems, but don’t scale well to the kinds of practical problems that applied statisticians are interested in. Conversely, there are a few well-known probabilistic programming languages developed by and for statisticians which have efficient inference engines, but are hampered by inflexible, inelegant languages and APIs. Rainier is interesting because it is an attempt to bridge the gap between these two worlds: it has a functional, composable, extensible, monadic API, yet is backed by a very efficient, high-performance scalable inference engine, using HMC and a static compute graph for reverse-mode AD. Clearly there will be some loss of generality associated with choosing an efficient inference algorithm (eg. for HMC, there needs to be a fixed number of parameters and they must all be continuous), but it still covers a large proportion of the class of hierarchical models commonly used in applied statistical modelling.

In this post I’ll give a quick introduction to Rainier using an interactive session requiring only that SBT is installed and the Rainier repo is downloaded or cloned.

Interactive session

To follow along with this post just clone, or download and unpack, the Rainier repo, and run SBT from the top-level Rainier directory and paste commands. First start a Scala REPL.

project rainierPlot
console

Before we start building models, we need some data. For this post we will focus on a simple logistic regression model, and so we will begin by simulating some synthetic data consistent with such a model.

val r = new scala.util.Random(0)
val N = 1000
val beta0 = 0.1
val beta1 = 0.3
val x = (1 to N) map { i =>
  3.0 * r.nextGaussian
}
val theta = x map { xi =>
  beta0 + beta1 * xi
}
def expit(x: Double): Double = 1.0 / (1.0 + math.exp(-x))
val p = theta map expit
val y = p map (pi => (r.nextDouble < pi))

Now we have some synthetic data, we can fit the model and see if we are able to recover the “true” parameters used to generate the synthetic data. In Rainier, we build models by declaring probabilistic programs for the model and the data, and then run an inference engine to generate samples from the posterior distribution.

Start with a bunch of Rainier imports:

import com.stripe.rainier.compute._
import com.stripe.rainier.core._
import com.stripe.rainier.sampler._
import com.stripe.rainier.repl._

Now we want to build a model. We do so by describing the joint distribution of parameters and data. Rainier has a few built-in distributions, and these can be combined using standard functional monadic combinators such as map, zip, flatMap, etc., to create a probabilistic program representing a probability monad for the model. Due to the monadic nature of such probabilistic programs, it is often most natural to declare them using a for-expression.

val model = for {
  beta0 <- Normal(0, 5).param
  beta1 <- Normal(0, 5).param
  _ <- Predictor.from{x: Double =>
      {
        val theta = beta0 + beta1 * x
        val p = Real(1.0) / (Real(1.0) + (Real(0.0) - theta).exp)
        Categorical.boolean(p)
      }
    }.fit(x zip y)
} yield Map("b0"->beta0, "b1"->beta1)

This kind of construction is very natural for anyone familiar with monadic programming in Scala, but will no doubt be a little mysterious otherwise. RandomVariable is the probability monad used for HMC sampling, and these can be constructed from Distributions using .param (for unobserved parameters) and .fit (for variables with associated observations). Predictor is just a convenience for observations corresponding to covariate information. model is therefore a RandomVariable over beta0 and beta1, the two unobserved parameters of interest. Note that I briefly discussed this kind of pure functional approach to describing probabilistic programs (using Rand from Breeze) in my post on MCMC as a stream.

Now we have our probabilistic program, we can sample from it using HMC as follows.

implicit val rng = ScalaRNG(3)
val its = 10000
val thin = 5
val out = model.sample(HMC(5), 10000, its*thin, thin)
println(out.take(10))

The argument to HMC() is the number of leapfrog steps to take per iteration.

Finally, we can use EvilPlot to look at the HMC output and check that we have managed to reasonably recover the true parameters associated with our synthetic data.

import com.cibo.evilplot.geometry.Extent
import com.stripe.rainier.plot.EvilTracePlot._

render(traces(out, truth = Map("b0" -> beta0, "b1" -> beta1)),
  "traceplots.png", Extent(1200, 1000))
render(pairs(out, truth = Map("b0" -> beta0, "b1" -> beta1)), "pairs.png")

Everything looks good, and the sampling is very fast!

Further reading

For further information, see the Rainier repo. In particular, start with the tour of Rainier’s core, which gives a more detailed introduction to how Rainier works than this post. Those interested in how the efficient AD works may want to read about the compute graph, and the implementation notes explain how it all fits together. There is some basic ScalaDoc for the core package, and also some examples (including this one), and there’s a gitter channel for asking questions. This is a very new project, so there are a few minor bugs and wrinkles in the initial release, but development is progressing rapidly, so I fully expect the library to get properly battle-hardened over the next few months.

For those unfamiliar with the monadic approach to probabilistic programming, then Ścibior et al (2015) is probably a good starting point.

Using EvilPlot with scala-view

EvilPlot

EvilPlot is a new functional data visualisation library for Scala. Although there are several data viz libraries for Scala, this new library has a nice functional API for producing attractive, flexible, compositional plots which can be rendered in JVM applications and in web applications (via Scala.js). For a quick introduction, see this blog post from one of the library’s creators. For further information, see the official documentation and the github repo. For a quick overview of the kinds of plots that the library is capable of generating, see the plot catalog.

The library is designed to produce plots which can be rendered into applications. However, when doing data analysis in the REPL on the JVM, it is often convenient to be able to just pop up a plot in a window on the desktop. EvilPlot doesn’t seem to contain code for on-screen rendering, but the plots can be rendered to a bitmap image. In the previous post I described a small library, scala-view, which renders such images, and image sequences on the desktop. In this post I’ll walk through using scala-view to render EvilPlot plots on-screen.

An interactive session

To follow this session, you just need to run SBT from an empty directory. Just run sbt and paste the following at the SBT prompt:

set libraryDependencies += "com.cibo" %% "evilplot" % "0.2.0"
set libraryDependencies += "com.github.darrenjw" %% "scala-view" % "0.6-SNAPSHOT"
set resolvers += Resolver.bintrayRepo("cibotech", "public")
set resolvers += "Sonatype Snapshots" at "https://oss.sonatype.org/content/repositories/snapshots/"
set scalaVersion := "2.12.4"
set fork := true
console

Displaying a single plot

This will give a Scala REPL prompt. First we need some imports:

import com.cibo.evilplot.plot._
import com.cibo.evilplot.colors._
import com.cibo.evilplot.plot.aesthetics.DefaultTheme._
import com.cibo.evilplot.numeric.Point
import java.awt.Image.SCALE_SMOOTH
import scalaview.Utils._

We can simulate some data an produce a simple line chart:

val data = Seq.tabulate(100) { i =>
  Point(i.toDouble, scala.util.Random.nextDouble())
}
val plot = LinePlot.series(data, "Line graph", HSL(210, 100, 56)).
  xAxis().yAxis().frame().
  xLabel("x").yLabel("y").render()

This plot object contains the rendering instructions, but doesn’t actually produce a plot. We can use scala-view to display it as follows:

scalaview.SfxImageViewer(biResize(plot.asBufferedImage,1000,800,SCALE_SMOOTH))

This will produce a window on screen something like the following:

Don’t close this plot yet, as this will confuse the REPL. Just switch back to the REPL and continue.

Animating a sequence of plots

Sometimes we want to produce a sequence of plots. Let’s now suppose that the data above arises sequentially as a stream, and that we want to produce a sequence of plots with each observation as it arrives. First create a stream of partial datasets and map a function which turns a dataset into a plot to get a stream of images representing the plots. Then pass the stream of images into the viewer to get an animated sequence of plots on-screen:

val dataStream = data.toStream
val cumulStream = dataStream.scanLeft(Nil: List[Point])((l,p) => p :: l).drop(1)
def dataToImage(data: List[Point]) = LinePlot.
  series(data, "Line graph", HSL(210, 100, 56)).
    xAxis().yAxis().frame().
    xLabel("x").yLabel("y").render().asBufferedImage
val plotStream = cumulStream map (d => biResize(dataToImage(d),1000,800,SCALE_SMOOTH))
scalaview.SfxImageViewer.bi(plotStream, 100000, autoStart=true)

Scala-view: Animate streams of images

Introduction

In the previous post I discussed how comonads can be useful for structuring certain kinds of scientific and statistical computations. Two of the examples I gave were concerned with the time-evolution of 2-d images. In that post I used Breeze to animate the sequence of computed images. In this post I want to describe an alternative that is better suited to animating an image sequence.

Scala-view is a small Scala library for animating a Stream of Images on-screen in a separate window managed by your window manager. It works with both ScalaFX Images (recommended) and Scala Swing/AWT BufferedImages (legacy). The stream of images is animated in a window with some simple controls to start and stop the animation, and to turn on and off the saving of image frames to disk (typically for the purpose of turning the image sequence into a movie). An example of what a window might look like is given below.

Ising window

More comprehensive documentation is available from the scala-view github repo, but here I give a quick introduction to the library to outline its capabilities.

A Scala-view tutorial

This brief tutorial gives a quick introduction to using the Scala-view library for viewing a ScalaFX Image Stream. It assumes only that you have SBT installed, and that you run SBT from an empty directory.

An SBT REPL

Start by running SBT from an empty or temporary directory to get an SBT prompt:

$ sbt
>

Now we need to configure SBT to use the Scala-view library, and start a console. From the SBT prompt:

set libraryDependencies += "com.github.darrenjw" %% "scala-view" % "0.5"
set scalaVersion := "2.12.4"
console

The should result in a scala> REPL prompt. We can now use Scala and the Scala-view library interactively.

An example REPL session

You should be able to paste the code snippets below directly into the REPL. You may find :paste mode helpful.

We will replicate the heat equation example from the examples-sfx directory, which is loosely based on the example from my blog post on comonads. We will start by defining a simple parallel Image and corresponding comonadic pointed image PImage type. If you aren’t familiar with comonads, you may find it helpful to read through that post.

import scala.collection.parallel.immutable.ParVector
case class Image[T](w: Int, h: Int, data: ParVector[T]) {
  def apply(x: Int, y: Int): T = data(x * h + y)
  def map[S](f: T => S): Image[S] = Image(w, h, data map f)
  def updated(x: Int, y: Int, value: T): Image[T] =
    Image(w, h, data.updated(x * h + y, value))
}

case class PImage[T](x: Int, y: Int, image: Image[T]) {
  def extract: T = image(x, y)
  def map[S](f: T => S): PImage[S] = PImage(x, y, image map f)
  def coflatMap[S](f: PImage[T] => S): PImage[S] = PImage(
    x, y, Image(image.w, image.h,
      (0 until (image.w * image.h)).toVector.par.map(i => {
        val xx = i / image.h
        val yy = i % image.h
        f(PImage(xx, yy, image))
      })))
  def up: PImage[T] = {
    val py = y - 1
    val ny = if (py >= 0) py else (py + image.h)
    PImage(x, ny, image)
  }
  def down: PImage[T] = {
    val py = y + 1
    val ny = if (py < image.h) py else (py - image.h)
    PImage(x, ny, image)
  }
  def left: PImage[T] = {
    val px = x - 1
    val nx = if (px >= 0) px else (px + image.w)
    PImage(nx, y, image)
  }
  def right: PImage[T] = {
    val px = x + 1
    val nx = if (px < image.w) px else (px - image.w)
    PImage(nx, y, image)
  }
}

We will need a function to convert this image into a ScalaFX WritableImage.

import scalafx.scene.image.WritableImage
import scalafx.scene.paint._
def toSfxI(im: Image[Double]): WritableImage = {
    val wi = new WritableImage(im.w, im.h)
    val pw = wi.pixelWriter
    (0 until im.w) foreach (i =>
      (0 until im.h) foreach (j =>
        pw.setColor(i, j, Color.gray(im(i,j)))
      ))
    wi
  }

We will need a starting image representing the initial condition for the heat equation.

val w = 600
val h = 500
val pim0 = PImage(0, 0, Image(w, h,
  ((0 until w*h).toVector map {i: Int => {
  val x = i / h
  val y = i % h
  0.1*math.cos(0.1*math.sqrt((x*x+y*y))) + 0.1 + 0.8*math.random
  }}).par
))

We can define a kernel associated with the update of a single image pixel based on a single time step of a finite difference solution of the heat equation.

def kernel(pi: PImage[Double]): Double = (2*pi.extract+
  pi.up.extract+pi.down.extract+pi.left.extract+pi.right.extract)/6.0

We can now create a Stream of PImage with

def pims = Stream.iterate(pim0)(_.coflatMap(kernel))

We can turn this into a Stream[WritableImage] with

def sfxis = pims map (im => toSfxI(im.image))

Note that we are essentially finished at this point, but so far everything we have done has been purely functional with no side effects. We haven’t even computed our solution to the heat equation. All we have constructed are lazy infinite streams representing the solution of the heat equation.

Finally, we can render our Stream of Images on screen with

scalaview.SfxImageViewer(sfxis,1e7.toInt)

which has a delay of 1e7 nanoseconds (10 milliseconds) between frames.

This should pop up a window on your display containing the initial image. Click on the Start button to animate the solution of the heat equation. See the API docs for SfxImageViewer for additional options. The ScalaFX API docs may also be useful, especially the docs for Image and WritableImage.

Comonads for scientific and statistical computing in Scala

Introduction

In a previous post I’ve given a brief introduction to monads in Scala, aimed at people interested in scientific and statistical computing. Monads are a concept from category theory which turn out to be exceptionally useful for solving many problems in functional programming. But most categorical concepts have a dual, usually prefixed with “co”, so the dual of a monad is the comonad. Comonads turn out to be especially useful for formulating algorithms from scientific and statistical computing in an elegant way. In this post I’ll illustrate their use in signal processing, image processing, numerical integration of PDEs, and Gibbs sampling (of an Ising model). Comonads enable the extension of a local computation to a global computation, and this pattern crops up all over the place in statistical computing.

Monads and comonads

Simplifying massively, from the viewpoint of a Scala programmer, a monad is a mappable (functor) type class augmented with the methods pure and flatMap:

trait Monad[M[_]] extends Functor[M] {
  def pure[T](v: T): M[T]
  def flatMap[T,S](v: M[T])(f: T => M[S]): M[S]
}

In category theory, the dual of a concept is typically obtained by “reversing the arrows”. Here that means reversing the direction of the methods pure and flatMap to get extract and coflatMap, respectively.

trait Comonad[W[_]] extends Functor[W] {
  def extract[T](v: W[T]): T
  def coflatMap[T,S](v: W[T])(f: W[T] => S): W[S]
}

So, while pure allows you to wrap plain values in a monad, extract allows you to get a value out of a comonad. So you can always get a value out of a comonad (unlike a monad). Similarly, while flatMap allows you to transform a monad using a function returning a monad, coflatMap allows you to transform a comonad using a function which collapses a comonad to a single value. It is coflatMap (sometimes called extend) which can extend a local computation (producing a single value) to the entire comonad. We’ll look at how that works in the context of some familiar examples.

Applying a linear filter to a data stream

One of the simplest examples of a comonad is an infinite stream of data. I’ve discussed streams in a previous post. By focusing on infinite streams we know the stream will never be empty, so there will always be a value that we can extract. Which value does extract give? For a Stream encoded as some kind of lazy list, the only value we actually know is the value at the head of the stream, with subsequent values to be lazily computed as required. So the head of the list is the only reasonable value for extract to return.

Understanding coflatMap is a bit more tricky, but it is coflatMap that provides us with the power to apply a non-trivial statistical computation to the stream. The input is a function which transforms a stream into a value. In our example, that will be a function which computes a weighted average of the first few values and returns that weighted average as the result. But the return type of coflatMap must be a stream of such computations. Following the types, a few minutes thought reveals that the only reasonable thing to do is to return the stream formed by applying the weighted average function to all sub-streams, recursively. So, for a Stream s (of type Stream[T]) and an input function f: W[T] => S, we form a stream whose head is f(s) and whose tail is coflatMap(f) applied to s.tail. Again, since we are working with an infinite stream, we don’t have to worry about whether or not the tail is empty. This gives us our comonadic Stream, and it is exactly what we need for applying a linear filter to the data stream.

In Scala, Cats is a library providing type classes from Category theory, and instances of those type classes for parametrised types in the standard library. In particular, it provides us with comonadic functionality for the standard Scala Stream. Let’s start by defining a stream corresponding to the logistic map.

import cats._
import cats.implicits._

val lam = 3.7
def s = Stream.iterate(0.5)(x => lam*x*(1-x))
s.take(10).toList
// res0: List[Double] = List(0.5, 0.925, 0.25668749999999985,
//  0.7059564011718747, 0.7680532550204203, 0.6591455741499428, ...

Let us now suppose that we want to apply a linear filter to this stream, in order to smooth the values. The idea behind using comonads is that you figure out how to generate one desired value, and let coflatMap take care of applying the same logic to the rest of the structure. So here, we need a function to generate the first filtered value (since extract is focused on the head of the stream). A simple first attempt a function to do this might look like the following.

  def linearFilterS(weights: Stream[Double])(s: Stream[Double]): Double =
    (weights, s).parMapN(_*_).sum

This aligns each weight in parallel with a corresponding value from the stream, and combines them using multiplication. The resulting (hopefully finite length) stream is then summed (with addition). We can test this with

linearFilterS(Stream(0.25,0.5,0.25))(s)
// res1: Double = 0.651671875

and let coflatMap extend this computation to the rest of the stream with something like:

s.coflatMap(linearFilterS(Stream(0.25,0.5,0.25))).take(5).toList
// res2: List[Double] = List(0.651671875, 0.5360828502929686, ...

This is all completely fine, but our linearFilterS function is specific to the Stream comonad, despite the fact that all we’ve used about it in the function is that it is a parallelly composable and foldable. We can make this much more generic as follows:

  def linearFilter[F[_]: Foldable, G[_]](
    weights: F[Double], s: F[Double]
  )(implicit ev: NonEmptyParallel[F, G]): Double =
    (weights, s).parMapN(_*_).fold

This uses some fairly advanced Scala concepts which I don’t want to get into right now (I should also acknowledge that I had trouble getting the syntax right for this, and got help from Fabio Labella (@SystemFw) on the Cats gitter channel). But this version is more generic, and can be used to linearly filter other data structures than Stream. We can use this for regular Streams as follows:

s.coflatMap(s => linearFilter(Stream(0.25,0.5,0.25),s))
// res3: scala.collection.immutable.Stream[Double] = Stream(0.651671875, ?)

But we can apply this new filter to other collections. This could be other, more sophisticated, streams such as provided by FS2, Monix or Akka streams. But it could also be a non-stream collection, such as List:

val sl = s.take(10).toList
sl.coflatMap(sl => linearFilter(List(0.25,0.5,0.25),sl))
// res4: List[Double] = List(0.651671875, 0.5360828502929686, ...

Assuming that we have the Breeze scientific library available, we can plot the raw and smoothed trajectories.

def myFilter(s: Stream[Double]): Double =
  linearFilter(Stream(0.25, 0.5, 0.25),s)
val n = 500
import breeze.plot._
import breeze.linalg._
val fig = Figure(s"The (smoothed) logistic map (lambda=$lam)")
val p0 = fig.subplot(3,1,0)
p0 += plot(linspace(1,n,n),s.take(n))
p0.ylim = (0.0,1.0)
p0.title = s"The logistic map (lambda=$lam)"
val p1 = fig.subplot(3,1,1)
p1 += plot(linspace(1,n,n),s.coflatMap(myFilter).take(n))
p1.ylim = (0.0,1.0)
p1.title = "Smoothed by a simple linear filter"
val p2 = fig.subplot(3,1,2)
p2 += plot(linspace(1,n,n),s.coflatMap(myFilter).coflatMap(myFilter).coflatMap(myFilter).coflatMap(myFilter).coflatMap(myFilter).take(n))
p2.ylim = (0.0,1.0)
p2.title = "Smoothed with 5 applications of the linear filter"
fig.refresh

Image processing and the heat equation

Streaming data is in no way the only context in which a comonadic approach facilitates an elegant approach to scientific and statistical computing. Comonads crop up anywhere where we want to extend a computation that is local to a small part of a data structure to the full data structure. Another commonly cited area of application of comonadic approaches is image processing (I should acknowledge that this section of the post is very much influenced by a blog post on comonadic image processing in Haskell). However, the kinds of operations used in image processing are in many cases very similar to the operations used in finite difference approaches to numerical integration of partial differential equations (PDEs) such as the heat equation, so in this section I will blur (sic) the distinction between the two, and numerically integrate the 2D heat equation in order to Gaussian blur a noisy image.

First we need a simple image type which can have pixels of arbitrary type T (this is very important – all functors must be fully type polymorphic).

  import scala.collection.parallel.immutable.ParVector
  case class Image[T](w: Int, h: Int, data: ParVector[T]) {
    def apply(x: Int, y: Int): T = data(x*h+y)
    def map[S](f: T => S): Image[S] = Image(w, h, data map f)
    def updated(x: Int, y: Int, value: T): Image[T] =
      Image(w,h,data.updated(x*h+y,value))
  }

Here I’ve chosen to back the image with a parallel immutable vector. This wasn’t necessary, but since this type has a map operation which automatically parallelises over multiple cores, any map operations applied to the image will be automatically parallelised. This will ultimately lead to all of our statistical computations being automatically parallelised without us having to think about it.

As it stands, this image isn’t comonadic, since it doesn’t implement extract or coflatMap. Unlike the case of Stream, there isn’t really a uniquely privileged pixel, so it’s not clear what extract should return. For many data structures of this type, we make them comonadic by adding a “cursor” pointing to a “current” element of interest, and use this as the focus for computations applied with coflatMap. This is simplest to explain by example. We can define our “pointed” image type as follows:

  case class PImage[T](x: Int, y: Int, image: Image[T]) {
    def extract: T = image(x, y)
    def map[S](f: T => S): PImage[S] = PImage(x, y, image map f)
    def coflatMap[S](f: PImage[T] => S): PImage[S] = PImage(
      x, y, Image(image.w, image.h,
      (0 until (image.w * image.h)).toVector.par.map(i => {
        val xx = i / image.h
        val yy = i % image.h
        f(PImage(xx, yy, image))
      })))

There is missing a closing brace, as I’m not quite finished. Here x and y represent the location of our cursor, so extract returns the value of the pixel indexed by our cursor. Similarly, coflatMap forms an image where the value of the image at each location is the result of applying the function f to the image which had the cursor set to that location. Clearly f should use the cursor in some way, otherwise the image will have the same value at every pixel location. Note that map and coflatMap operations will be automatically parallelised. The intuitive idea behind coflatMap is that it extends local computations. For the stream example, the local computation was a linear combination of nearby values. Similarly, in image analysis problems, we often want to apply a linear filter to nearby pixels. We can get at the pixel at the cursor location using extract, but we probably also want to be able to move the cursor around to nearby locations. We can do that by adding some appropriate methods to complete the class definition.

    def up: PImage[T] = {
      val py = y-1
      val ny = if (py >= 0) py else (py + image.h)
      PImage(x,ny,image)
    }
    def down: PImage[T] = {
      val py = y+1
      val ny = if (py < image.h) py else (py - image.h)
      PImage(x,ny,image)
    }
    def left: PImage[T] = {
      val px = x-1
      val nx = if (px >= 0) px else (px + image.w)
      PImage(nx,y,image)
    }
    def right: PImage[T] = {
      val px = x+1
      val nx = if (px < image.w) px else (px - image.w)
      PImage(nx,y,image)
    }
  }

Here each method returns a new pointed image with the cursor shifted by one pixel in the appropriate direction. Note that I’ve used periodic boundary conditions here, which often makes sense for numerical integration of PDEs, but makes less sense for real image analysis problems. Note that we have embedded all “indexing” issues inside the definition of our classes. Now that we have it, none of the statistical algorithms that we develop will involve any explicit indexing. This makes it much less likely to develop algorithms containing bugs corresponding to “off-by-one” or flipped axis errors.

This class is now fine for our requirements. But if we wanted Cats to understand that this structure is really a comonad (perhaps because we wanted to use derived methods, such as coflatten), we would need to provide evidence for this. The details aren’t especially important for this post, but we can do it simply as follows:

  implicit val pimageComonad = new Comonad[PImage] {
    def extract[A](wa: PImage[A]) = wa.extract
    def coflatMap[A,B](wa: PImage[A])(f: PImage[A] => B): PImage[B] =
      wa.coflatMap(f)
    def map[A,B](wa: PImage[A])(f: A => B): PImage[B] = wa.map(f)
  }

It’s handy to have some functions for converting Breeze dense matrices back and forth with our image class.

  import breeze.linalg.{Vector => BVec, _}
  def BDM2I[T](m: DenseMatrix[T]): Image[T] =
    Image(m.cols, m.rows, m.data.toVector.par)
  def I2BDM(im: Image[Double]): DenseMatrix[Double] =
    new DenseMatrix(im.h,im.w,im.data.toArray)

Now we are ready to see how to use this in practice. Let’s start by defining a very simple linear filter.

def fil(pi: PImage[Double]): Double = (2*pi.extract+
  pi.up.extract+pi.down.extract+pi.left.extract+pi.right.extract)/6.0

This simple filter can be used to “smooth” or “blur” an image. However, from a more sophisticated viewpoint, exactly this type of filter can be used to represent one time step of a numerical method for time integration of the 2D heat equation. Now we can simulate a noisy image and apply our filter to it using coflatMap:

import breeze.stats.distributions.Gaussian
val bdm = DenseMatrix.tabulate(200,250){case (i,j) => math.cos(
  0.1*math.sqrt((i*i+j*j))) + Gaussian(0.0,2.0).draw}
val pim0 = PImage(0,0,BDM2I(bdm))
def pims = Stream.iterate(pim0)(_.coflatMap(fil))

Note that here, rather than just applying the filter once, I’ve generated an infinite stream of pointed images, each one representing an additional application of the linear filter. Thus the sequence represents the time solution of the heat equation with initial condition corresponding to our simulated noisy image.

We can render the first few frames to check that it seems to be working.

import breeze.plot._
val fig = Figure("Diffusing a noisy image")
pims.take(25).zipWithIndex.foreach{case (pim,i) => {
  val p = fig.subplot(5,5,i)
  p += image(I2BDM(pim.image))
}}

Note that the numerical integration is carried out in parallel on all available cores automatically. Other image filters can be applied, and other (parabolic) PDEs can be numerically integrated in an essentially similar way.

Gibbs sampling the Ising model

Another place where the concept of extending a local computation to a global computation crops up is in the context of Gibbs sampling a high-dimensional probability distribution by cycling through the sampling of each variable in turn from its full-conditional distribution. I’ll illustrate this here using the Ising model, so that I can reuse the pointed image class from above, but the principles apply to any Gibbs sampling problem. In particular, the Ising model that we consider has a conditional independence structure corresponding to a graph of a square lattice. As above, we will use the comonadic structure of the square lattice to construct a Gibbs sampler. However, we can construct a Gibbs sampler for arbitrary graphical models in an essentially identical way by using a graph comonad.

Let’s begin by simulating a random image containing +/-1s:

import breeze.stats.distributions.{Binomial,Bernoulli}
val beta = 0.4
val bdm = DenseMatrix.tabulate(500,600){
  case (i,j) => (new Binomial(1,0.2)).draw
}.map(_*2 - 1) // random matrix of +/-1s
val pim0 = PImage(0,0,BDM2I(bdm))

We can use this to initialise our Gibbs sampler. We now need a Gibbs kernel representing the update of each pixel.

def gibbsKernel(pi: PImage[Int]): Int = {
   val sum = pi.up.extract+pi.down.extract+pi.left.extract+pi.right.extract
   val p1 = math.exp(beta*sum)
   val p2 = math.exp(-beta*sum)
   val probplus = p1/(p1+p2)
   if (new Bernoulli(probplus).draw) 1 else -1
}

So far so good, but there a couple of issues that we need to consider before we plough ahead and start coflatMapping. The first is that pure functional programmers will object to the fact that this function is not pure. It is a stochastic function which has the side-effect of mutating the random number state. I’m just going to duck that issue here, as I’ve previously discussed how to fix it using probability monads, and I don’t want it to distract us here.

However, there is a more fundamental problem here relating to parallel versus sequential application of Gibbs kernels. coflatMap is conceptually parallel (irrespective of how it is implemented) in that all computations used to build the new comonad are based solely on the information available in the starting comonad. OTOH, detailed balance of the Markov chain will only be preserved if the kernels for each pixel are applied sequentially. So if we coflatMap this kernel over the image we will break detailed balance. I should emphasise that this has nothing to do with the fact that I’ve implemented the pointed image using a parallel vector. Exactly the same issue would arise if we switched to backing the image with a regular (sequential) immutable Vector.

The trick here is to recognise that if we coloured alternate pixels black and white using a chequerboard pattern, then all of the black pixels are conditionally independent given the white pixels and vice-versa. Conditionally independent pixels can be updated by parallel application of a Gibbs kernel. So we just need separate kernels for updating odd and even pixels.

def oddKernel(pi: PImage[Int]): Int =
  if ((pi.x+pi.y) % 2 != 0) pi.extract else gibbsKernel(pi)
def evenKernel(pi: PImage[Int]): Int =
  if ((pi.x+pi.y) % 2 == 0) pi.extract else gibbsKernel(pi)

Each of these kernels can be coflatMapped over the image preserving detailed balance of the chain. So we can now construct an infinite stream of MCMC iterations as follows.

def pims = Stream.iterate(pim0)(_.coflatMap(oddKernel).
  coflatMap(evenKernel))

We can animate the first few iterations with:

import breeze.plot._
val fig = Figure("Ising model Gibbs sampler")
fig.width = 1000
fig.height = 800
pims.take(50).zipWithIndex.foreach{case (pim,i) => {
  print(s"$i ")
  fig.clear
  val p = fig.subplot(1,1,0)
  p.title = s"Ising model: frame $i"
  p += image(I2BDM(pim.image.map{_.toDouble}))
  fig.refresh
}}
println

Here I have a movie showing the first 1000 iterations. Note that youtube seems to have over-compressed it, but you should get the basic idea.

Again, note that this MCMC sampler runs in parallel on all available cores, automatically. This issue of odd/even pixel updating emphasises another issue that crops up a lot in functional programming: very often, thinking about how to express an algorithm functionally leads to an algorithm which parallelises naturally. For general graphs, figuring out which groups of nodes can be updated in parallel is essentially the graph colouring problem. I’ve discussed this previously in relation to parallel MCMC in:

Wilkinson, D. J. (2005) Parallel Bayesian Computation, Chapter 16 in E. J. Kontoghiorghes (ed.) Handbook of Parallel Computing and Statistics, Marcel Dekker/CRC Press, 481-512.

Further reading

There are quite a few blog posts discussing comonads in the context of Haskell. In particular, the post on comonads for image analysis I mentioned previously, and this one on cellular automata. Bartosz’s post on comonads gives some connection back to the mathematical origins. Runar’s Scala comonad tutorial is the best source I know for comonads in Scala.

Full runnable code corresponding to this blog post is available from my blog repo.

scala-glm: Regression modelling in Scala

Introduction

As discussed in the previous post, I’ve recently constructed and delivered a short course on statistical computing with Scala. Much of the course is concerned with writing statistical algorithms in Scala, typically making use of the scientific and numerical computing library, Breeze. Breeze has all of the essential tools necessary for building statistical algorithms, but doesn’t contain any higher level modelling functionality. As part of the course, I walked through how to build a small library for regression modelling on top of Breeze, including all of the usual regression diagnostics (such as standard errors, t-statistics, p-values, F-statistics, etc.). While preparing the course materials it occurred to me that it would be useful to package and document this code properly for general use. In advance of the course I packaged the code up into a bare-bones library, but since then I’ve fleshed it out, tidied it up and documented it properly, so it’s now ready for people to use.

The library covers PCA, linear regression modelling and simple one-parameter GLMs (including logistic and Poisson regression). The underlying algorithms are fairly efficient and numerically stable (eg. linear regression uses the QR decomposition of the model matrix, and the GLM fitting uses QR within each IRLS step), though they are optimised more for clarity than speed. The library also includes a few utility functions and procedures, including a pairs plot (scatter-plot matrix).

A linear regression example

Plenty of documentation is available from the scala-glm github repo which I won’t repeat here. But to give a rough idea of how things work, I’ll run through an interactive session for the linear regression example.

First, download a dataset from the UCI ML Repository to disk for subsequent analysis (caching the file on disk is good practice, as it avoids unnecessary load on the UCI server, and allows running the code off-line):

import scalaglm._
import breeze.linalg._

val url = "http://archive.ics.uci.edu/ml/machine-learning-databases/00291/airfoil_self_noise.dat"
val fileName = "self-noise.csv"

// download the file to disk if it hasn't been already
val file = new java.io.File(fileName)
if (!file.exists) {
  val s = new java.io.PrintWriter(file)
  val data = scala.io.Source.fromURL(url).getLines
  data.foreach(l => s.write(l.trim.
    split('\t').filter(_ != "").
    mkString("", ",", "\n")))
  s.close
}

Once we have a CSV file on disk, we can load it up and look at it.

val mat = csvread(new java.io.File(fileName))
// mat: breeze.linalg.DenseMatrix[Double] =
// 800.0    0.0  0.3048  71.3  0.00266337  126.201
// 1000.0   0.0  0.3048  71.3  0.00266337  125.201
// 1250.0   0.0  0.3048  71.3  0.00266337  125.951
// ...
println("Dim: " + mat.rows + " " + mat.cols)
// Dim: 1503 6
val figp = Utils.pairs(mat, List("Freq", "Angle", "Chord", "Velo", "Thick", "Sound"))
// figp: breeze.plot.Figure = breeze.plot.Figure@37718125

We can then regress the response in the final column on the other variables.

val y = mat(::, 5) // response is the final column
// y: DenseVector[Double] = DenseVector(126.201, 125.201, ...
val X = mat(::, 0 to 4)
// X: breeze.linalg.DenseMatrix[Double] =
// 800.0    0.0  0.3048  71.3  0.00266337
// 1000.0   0.0  0.3048  71.3  0.00266337
// 1250.0   0.0  0.3048  71.3  0.00266337
// ...
val mod = Lm(y, X, List("Freq", "Angle", "Chord", "Velo", "Thick"))
// mod: scalaglm.Lm =
// Lm(DenseVector(126.201, 125.201, ...
mod.summary
// Estimate	 S.E.	 t-stat	p-value		Variable
// ---------------------------------------------------------
// 132.8338	 0.545	243.866	0.0000 *	(Intercept)
//  -0.0013	 0.000	-30.452	0.0000 *	Freq
//  -0.4219	 0.039	-10.847	0.0000 *	Angle
// -35.6880	 1.630	-21.889	0.0000 *	Chord
//   0.0999	 0.008	12.279	0.0000 *	Velo
// -147.3005	15.015	-9.810	0.0000 *	Thick
// Residual standard error:   4.8089 on 1497 degrees of freedom
// Multiple R-squared: 0.5157, Adjusted R-squared: 0.5141
// F-statistic: 318.8243 on 5 and 1497 DF, p-value: 0.00000
val fig = mod.plots
// fig: breeze.plot.Figure = breeze.plot.Figure@60d7ebb0

There is a .predict method for generating point predictions (and standard errors) given a new model matrix, and fitting GLMs is very similar – these things are covered in the quickstart guide for the library.

Summary

scala-glm is a small Scala library built on top of the Breeze numerical library which enables simple and convenient regression modelling in Scala. It is reasonably well documented and usable in its current form, but I intend to gradually add additional features according to demand as time permits.

Statistical computing with Scala free on-line course

I’ve recently delivered a three-day intensive short-course on Scala for statistical computing and data science. The course seemed to go well, and the experience has convinced me that Scala should be used a lot more by statisticians and data scientists for a range of problems in statistical computing. In particular, the simplicity of writing fast efficient parallel algorithms is reason alone to take a careful look at Scala. With a view to helping more statisticians get to grips with Scala, I’ve decided to freely release all of the essential materials associated with the course: the course notes (as PDF), code fragments, complete examples, end-of-chapter exercises, etc. Although I developed the materials with the training course in mind, the course notes are reasonably self-contained, making the course quite suitable for self-study. At some point I will probably flesh out the notes into a proper book, but that will probably take me a little while.

I’ve written a brief self-study guide to point people in the right direction. For people studying the material in their spare time, the course is probably best done over nine weeks (one chapter per week), and this will then cover material at a similar rate to a typical MOOC.

The nine chapters are:

1. Introduction
2. Scala and FP Basics
3. Collections
4. Scala Breeze
5. Monte Carlo
6. Statistical modelling
7. Tools
8. Apache Spark
9. Advanced topics

For anyone frustrated by the limitations of dynamic languages such as R, Python or Octave, this course should provide a good pathway to an altogether more sophisticated, modern programming paradigm.