## One-way ANOVA with fixed and random effects from a Bayesian perspective

This blog post is derived from a computer practical session that I ran as part of my new course on Statistics for Big Data, previously discussed. This course covered a lot of material very quickly. In particular, I deferred introducing notions of hierarchical modelling until the Bayesian part of the course, where I feel it is more natural and powerful. However, some of the terminology associated with hierarchical statistical modelling probably seems a bit mysterious to those without a strong background in classical statistical modelling, and so this practical session was intended to clear up some potential confusion. I will analyse a simple one-way Analysis of Variance (ANOVA) model from a Bayesian perspective, making sure to highlight the difference between fixed and random effects in a Bayesian context where everything is random, as well as emphasising the associated identifiability issues. R code is used to illustrate the ideas.

### Example scenario

We will consider the body mass index (BMI) of new male undergraduate students at a selection of UK Universities. Let us suppose that our data consist of measurements of (log) BMI for a random sample of 1,000 males at each of 8 Universities. We are interested to know if there are any differences between the Universities. Again, we want to model the process as we would simulate it, so thinking about how we would simulate such data is instructive. We start by assuming that the log BMI is a normal random quantity, and that the variance is common across the Universities in question (this is quite a big assumption, and it is easy to relax). We assume that the mean of this normal distribution is University-specific, but that we do not have strong prior opinions regarding the way in which the Universities differ. That said, we expect that the Universities would not be very different from one another.

### Simulating data

A simple simulation of the data with some plausible parameters can be carried out as follows.

set.seed(1)
Z=matrix(rnorm(1000*8,3.1,0.1),nrow=8)
RE=rnorm(8,0,0.01)
X=t(Z+RE)
colnames(X)=paste("Uni",1:8,sep="")
Data=stack(data.frame(X))
boxplot(exp(values)~ind,data=Data,notch=TRUE)


Make sure that you understand exactly what this code is doing before proceeding. The boxplot showing the simulated data is given below.

### Frequentist analysis

We will start with a frequentist analysis of the data. The model we would like to fit is

$y_{ij} = \mu + \theta_i + \varepsilon_{ij}$

where i is an indicator for the University and j for the individual within a particular University. The “effect”, $\theta_i$ represents how the ith University differs from the overall mean. We know that this model is not actually identifiable when the model parameters are all treated as “fixed effects”, but R will handle this for us.

> mod=lm(values~ind,data=Data)
> summary(mod)

Call:
lm(formula = values ~ ind, data = Data)

Residuals:
Min       1Q   Median       3Q      Max
-0.36846 -0.06778 -0.00069  0.06910  0.38219

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept)  3.101068   0.003223 962.244  < 2e-16 ***
indUni2     -0.006516   0.004558  -1.430 0.152826
indUni3     -0.017168   0.004558  -3.767 0.000166 ***
indUni4      0.017916   0.004558   3.931 8.53e-05 ***
indUni5     -0.022838   0.004558  -5.011 5.53e-07 ***
indUni6     -0.001651   0.004558  -0.362 0.717143
indUni7      0.007935   0.004558   1.741 0.081707 .
indUni8      0.003373   0.004558   0.740 0.459300
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1019 on 7992 degrees of freedom
Multiple R-squared:  0.01439,	Adjusted R-squared:  0.01353
F-statistic: 16.67 on 7 and 7992 DF,  p-value: < 2.2e-16


We see that R has handled the identifiability problem using “treatment contrasts”, dropping the fixed effect for the first university, so that the intercept actually represents the mean value for the first University, and the effects for the other Univeristies represent the differences from the first University. If we would prefer to impose a sum constraint, then we can switch to sum contrasts with

options(contrasts=rep("contr.sum",2))


and then re-fit the model.

> mods=lm(values~ind,data=Data)
> summary(mods)

Call:
lm(formula = values ~ ind, data = Data)

Residuals:
Min       1Q   Median       3Q      Max
-0.36846 -0.06778 -0.00069  0.06910  0.38219

Coefficients:
Estimate Std. Error  t value Pr(>|t|)
(Intercept)  3.0986991  0.0011394 2719.558  < 2e-16 ***
ind1         0.0023687  0.0030146    0.786 0.432048
ind2        -0.0041477  0.0030146   -1.376 0.168905
ind3        -0.0147997  0.0030146   -4.909 9.32e-07 ***
ind4         0.0202851  0.0030146    6.729 1.83e-11 ***
ind5        -0.0204693  0.0030146   -6.790 1.20e-11 ***
ind6         0.0007175  0.0030146    0.238 0.811889
ind7         0.0103039  0.0030146    3.418 0.000634 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1019 on 7992 degrees of freedom
Multiple R-squared:  0.01439,	Adjusted R-squared:  0.01353
F-statistic: 16.67 on 7 and 7992 DF,  p-value: < 2.2e-16


This has 7 degrees of freedom for the effects, as before, but ensures that the 8 effects sum to precisely zero. This is arguably more interpretable in this case.

### Bayesian analysis

We will now analyse the simulated data from a Bayesian perspective, using JAGS.

#### Fixed effects

All parameters in Bayesian models are uncertain, and therefore random, so there is much confusion regarding the difference between “fixed” and “random” effects in a Bayesian context. For “fixed” effects, our prior captures the idea that we sample the effects independently from a “fixed” (typically vague) prior distribution. We could simply code this up and fit it in JAGS as follows.

require(rjags)
n=dim(X)[1]
p=dim(X)[2]
data=list(X=X,n=n,p=p)
init=list(mu=2,tau=1)
modelstring="
model {
for (j in 1:p) {
theta[j]~dnorm(0,0.0001)
for (i in 1:n) {
X[i,j]~dnorm(mu+theta[j],tau)
}
}
mu~dnorm(0,0.0001)
tau~dgamma(1,0.0001)
}
"
model=jags.model(textConnection(modelstring),data=data,inits=init)
update(model,n.iter=1000)
output=coda.samples(model=model,variable.names=c("mu","tau","theta"),n.iter=100000,thin=10)
print(summary(output))
plot(output)
autocorr.plot(output)
pairs(as.matrix(output))
crosscorr.plot(output)


On running the code we can clearly see that this naive approach leads to high posterior correlation between the mean and the effects, due to the fundamental lack of identifiability of the model. This also leads to MCMC mixing problems, but it is important to understand that this computational issue is conceptually entirely separate from the fundamental statisticial identifiability issue. Even if we could avoid MCMC entirely, the identifiability issue would remain.

A quick fix for the identifiability issue is to use “treatment contrasts”, just as for the frequentist model. We can implement that as follows.

data=list(X=X,n=n,p=p)
init=list(mu=2,tau=1)
modelstring="
model {
for (j in 1:p) {
for (i in 1:n) {
X[i,j]~dnorm(mu+theta[j],tau)
}
}
theta[1]<-0
for (j in 2:p) {
theta[j]~dnorm(0,0.0001)
}
mu~dnorm(0,0.0001)
tau~dgamma(1,0.0001)
}
"
model=jags.model(textConnection(modelstring),data=data,inits=init)
update(model,n.iter=1000)
output=coda.samples(model=model,variable.names=c("mu","tau","theta"),n.iter=100000,thin=10)
print(summary(output))
plot(output)
autocorr.plot(output)
pairs(as.matrix(output))
crosscorr.plot(output)


Running this we see that the model now works perfectly well, mixes nicely, and gives sensible inferences for the treatment effects.

Another source of confusion for models of this type is data formating and indexing in JAGS models. For our balanced data there was not problem passing in data to JAGS as a matrix and specifying the model using nested loops. However, for unbalanced designs this is not necessarily so convenient, and so then it can be helpful to specify the model based on two-column data, as we would use for fitting using lm(). This is illustrated with the following model specification, which is exactly equivalent to the previous model, and should give identical (up to Monte Carlo error) results.

N=n*p
data=list(y=Data$values,g=Data$ind,N=N,p=p)
init=list(mu=2,tau=1)
modelstring="
model {
for (i in 1:N) {
y[i]~dnorm(mu+theta[g[i]],tau)
}
theta[1]<-0
for (j in 2:p) {
theta[j]~dnorm(0,0.0001)
}
mu~dnorm(0,0.0001)
tau~dgamma(1,0.0001)
}
"
model=jags.model(textConnection(modelstring),data=data,inits=init)
update(model,n.iter=1000)
output=coda.samples(model=model,variable.names=c("mu","tau","theta"),n.iter=100000,thin=10)
print(summary(output))
plot(output)


As suggested above, this indexing scheme is much more convenient for unbalanced data, and hence widely used. However, since our data is balanced here, we will revert to the matrix approach for the remainder of the post.

One final thing to consider before moving on to random effects is the sum-contrast model. We can implement this in various ways, but I’ve tried to encode it for maximum clarity below, imposing the sum-to-zero constraint via the final effect.

data=list(X=X,n=n,p=p)
init=list(mu=2,tau=1)
modelstring="
model {
for (j in 1:p) {
for (i in 1:n) {
X[i,j]~dnorm(mu+theta[j],tau)
}
}
for (j in 1:(p-1)) {
theta[j]~dnorm(0,0.0001)
}
theta[p] <- -sum(theta[1:(p-1)])
mu~dnorm(0,0.0001)
tau~dgamma(1,0.0001)
}
"
model=jags.model(textConnection(modelstring),data=data,inits=init)
update(model,n.iter=1000)
output=coda.samples(model=model,variable.names=c("mu","tau","theta"),n.iter=100000,thin=10)
print(summary(output))
plot(output)


Again, this works perfectly well and gives similar results to the frequentist analysis.

#### Random effects

The key difference between fixed and random effects in a Bayesian framework is that random effects are not independent, being drawn from a distribution with parameters which are not fixed. Essentially, there is another level of hierarchy involved in the specification of the random effects. This is best illustrated by example. A random effects model for this problem is given below.

data=list(X=X,n=n,p=p)
init=list(mu=2,tau=1)
modelstring="
model {
for (j in 1:p) {
theta[j]~dnorm(0,taut)
for (i in 1:n) {
X[i,j]~dnorm(mu+theta[j],tau)
}
}
mu~dnorm(0,0.0001)
tau~dgamma(1,0.0001)
taut~dgamma(1,0.0001)
}
"
model=jags.model(textConnection(modelstring),data=data,inits=init)
update(model,n.iter=1000)
output=coda.samples(model=model,variable.names=c("mu","tau","taut","theta"),n.iter=100000,thin=10)
print(summary(output))
plot(output)


The only difference between this and our first naive attempt at a Bayesian fixed effects model is that we have put a gamma prior on the precision of the effect. Note that this model now runs and fits perfectly well, with reasonable mixing, and gives sensible parameter inferences. Although the effects here are not constrained to sum-to-zero, like in the case of sum contrasts for a fixed effects model, the prior encourages shrinkage towards zero, and so the random effect distribution can be thought of as a kind of soft version of a hard sum-to-zero constraint. From a predictive perspective, this model is much more powerful. In particular, using a random effects model, we can make strong predictions for unobserved groups (eg. a ninth University), with sensible prediction intervals based on our inferred understanding of how similar different universities are. Using a fixed effects model this isn’t really possible. Even for a Bayesian version of a fixed effects model using proper (but vague) priors, prediction intervals for unobserved groups are not really sensible.

Since we have used simulated data here, we can compare the estimated random effects with the true effects generated during the simulation.

> apply(as.matrix(output),2,mean)
mu           tau          taut      theta[1]      theta[2]
3.098813e+00  9.627110e+01  7.015976e+03  2.086581e-03 -3.935511e-03
theta[3]      theta[4]      theta[5]      theta[6]      theta[7]
-1.389099e-02  1.881528e-02 -1.921854e-02  5.640306e-04  9.529532e-03
theta[8]
5.227518e-03
> RE
[1]  0.002637034 -0.008294518 -0.014616348  0.016839902 -0.015443243
[6] -0.001908871  0.010162117  0.005471262


We see that the Bayesian random effects model has done an excellent job of estimation. If we wished, we could relax the assumption of common variance across the groups by making tau a vector indexed by j, though there is not much point in persuing this here, since we know that the groups do all have the same variance.

#### Strong subjective priors

The above is the usual story regarding fixed and random effects in Bayesian inference. I hope this is reasonably clear, so really I should quit while I’m ahead… However, the issues are really a bit more subtle than I’ve suggested. The inferred precision of the random effects was around 7,000, so now lets re-run the original, naive, “fixed effects” model with a strong subjective Bayesian prior on the distribution of the effects.

data=list(X=X,n=n,p=p)
init=list(mu=2,tau=1)
modelstring="
model {
for (j in 1:p) {
theta[j]~dnorm(0,7000)
for (i in 1:n) {
X[i,j]~dnorm(mu+theta[j],tau)
}
}
mu~dnorm(0,0.0001)
tau~dgamma(1,0.0001)
}
"
model=jags.model(textConnection(modelstring),data=data,inits=init)
update(model,n.iter=1000)
output=coda.samples(model=model,variable.names=c("mu","tau","theta"),n.iter=100000,thin=10)
print(summary(output))
plot(output)


This model also runs perfectly well and gives sensible inferences, despite the fact that the effects are iid from a fixed distribution and there is no hard constraint on the effects. Similarly, we can make sensible predictions, together with appropriate prediction intervals, for an unobserved group. So it isn’t so much the fact that the effects are coupled via an extra level of hierarchy that makes things work. It’s really the fact that the effects are sensibly distributed and not just sampled directly from a vague prior. So for “real” subjective Bayesians the line between fixed and random effects is actually very blurred indeed…

## Getting started with Bayesian variable selection using JAGS and rjags

#### Bayesian variable selection

In a previous post I gave a quick introduction to using the rjags R package to access the JAGS Bayesian inference from within R. In this post I want to give a quick guide to using rjags for Bayesian variable selection. I intend to use this post as a starting point for future posts on Bayesian model and variable selection using more sophisticated approaches.

I will use the simple example of multiple linear regression to illustrate the ideas, but it should be noted that I’m just using that as an example. It turns out that in the context of linear regression there are lots of algebraic and computational tricks which can be used to simplify the variable selection problem. The approach I give here is therefore rather inefficient for linear regression, but generalises to more complex (non-linear) problems where analytical and computational short-cuts can’t be used so easily.

Consider a linear regression problem with n observations and p covariates, which we can write in matrix form as

$y = \alpha \boldmath{1} + X\beta + \varepsilon,$

where $X$ is an $n\times p$ matrix. The idea of variable selection is that probably not all of the p covariates are useful for predicting y, and therefore it would be useful to identify the variables which are, and just use those. Clearly each combination of variables corresponds to a different model, and so the variable selection amounts to choosing among the $2^p$ possible models. For large values of p it won’t be practical to consider each possible model separately, and so the idea of Bayesian variable selection is to consider a model containing all of the possible model combinations as sub-models, and the variable selection problem as just another aspect of the model which must be estimated from data. I’m simplifying and glossing over lots of details here, but there is a very nice review paper by O’Hara and Sillanpaa (2009) which the reader is referred to for further details.

The simplest and most natural way to tackle the variable selection problem from a Bayesian perspective is to introduce an indicator random variable $I_i$ for each covariate, and introduce these into the model in order to “zero out” inactive covariates. That is we write the ith regression coefficient $\beta_i$ as $\beta_i=I_i\beta^\star_i$, so that $\beta^\star_i$ is the regression coefficient when $I_i=1$, and “doesn’t matter” when $I_i=0$. There are various ways to choose the prior over $I_i$ and $\beta^\star_i$, but the simplest and most natural choice is to make them independent. This approach was used in Kuo and Mallick (1998), and hence is referred to as the Kuo and Mallick approach in O’Hara and Sillanpaa.

#### Simulating some data

In order to see how things work, let’s first simulate some data from a regression model with geometrically decaying regression coefficients.

n=500
p=20
X=matrix(rnorm(n*p),ncol=p)
beta=2^(0:(1-p))
print(beta)
alpha=3
tau=2
eps=rnorm(n,0,1/sqrt(tau))
y=alpha+as.vector(X%*%beta + eps)


Let’s also fit the model by least squares.

mod=lm(y~X)
print(summary(mod))


This should give output something like the following.

Call:
lm(formula = y ~ X)

Residuals:
Min       1Q   Median       3Q      Max
-1.62390 -0.48917 -0.02355  0.45683  2.35448

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept)  3.0565406  0.0332104  92.036  < 2e-16 ***
X1           0.9676415  0.0322847  29.972  < 2e-16 ***
X2           0.4840052  0.0333444  14.515  < 2e-16 ***
X3           0.2680482  0.0320577   8.361  6.8e-16 ***
X4           0.1127954  0.0314472   3.587 0.000369 ***
X5           0.0781860  0.0334818   2.335 0.019946 *
X6           0.0136591  0.0335817   0.407 0.684379
X7           0.0035329  0.0321935   0.110 0.912662
X8           0.0445844  0.0329189   1.354 0.176257
X9           0.0269504  0.0318558   0.846 0.397968
X10          0.0114942  0.0326022   0.353 0.724575
X11         -0.0045308  0.0330039  -0.137 0.890868
X12          0.0111247  0.0342482   0.325 0.745455
X13         -0.0584796  0.0317723  -1.841 0.066301 .
X14         -0.0005005  0.0343499  -0.015 0.988381
X15         -0.0410424  0.0334723  -1.226 0.220742
X16          0.0084832  0.0329650   0.257 0.797026
X17          0.0346331  0.0327433   1.058 0.290718
X18          0.0013258  0.0328920   0.040 0.967865
X19         -0.0086980  0.0354804  -0.245 0.806446
X20          0.0093156  0.0342376   0.272 0.785671
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7251 on 479 degrees of freedom
Multiple R-squared: 0.7187,     Adjusted R-squared: 0.707
F-statistic:  61.2 on 20 and 479 DF,  p-value: < 2.2e-16


The first 4 variables are “highly significant” and the 5th is borderline.

#### Saturated model

We can fit the saturated model using JAGS with the following code.

require(rjags)
data=list(y=y,X=X,n=n,p=p)
init=list(tau=1,alpha=0,beta=rep(0,p))
modelstring="
model {
for (i in 1:n) {
mean[i]<-alpha+inprod(X[i,],beta)
y[i]~dnorm(mean[i],tau)
}
for (j in 1:p) {
beta[j]~dnorm(0,0.001)
}
alpha~dnorm(0,0.0001)
tau~dgamma(1,0.001)
}
"
model=jags.model(textConnection(modelstring),
data=data,inits=init)
update(model,n.iter=100)
output=coda.samples(model=model,variable.names=c("alpha","beta","tau"),
n.iter=10000,thin=1)
print(summary(output))
plot(output)


I’ve hard-coded various hyper-parameters in the script which are vaguely reasonable for this kind of problem. I won’t include all of the output in this post, but this works fine and gives sensible results. However, it does not address the variable selection problem.

#### Basic variable selection

Let’s now modify the above script to do basic variable selection in the style of Kuo and Mallick.

data=list(y=y,X=X,n=n,p=p)
init=list(tau=1,alpha=0,betaT=rep(0,p),ind=rep(0,p))
modelstring="
model {
for (i in 1:n) {
mean[i]<-alpha+inprod(X[i,],beta)
y[i]~dnorm(mean[i],tau)
}
for (j in 1:p) {
ind[j]~dbern(0.2)
betaT[j]~dnorm(0,0.001)
beta[j]<-ind[j]*betaT[j]
}
alpha~dnorm(0,0.0001)
tau~dgamma(1,0.001)
}
"
model=jags.model(textConnection(modelstring),
data=data,inits=init)
update(model,n.iter=1000)
output=coda.samples(model=model,
variable.names=c("alpha","beta","ind","tau"),
n.iter=10000,thin=1)
print(summary(output))
plot(output)


Note that I’ve hard-coded an expectation that around 20% of variables should be included in the model. Again, I won’t include all of the output here, but the posterior mean of the indicator variables can be interpreted as posterior probabilities that the variables should be included in the model. Inspecting the output then reveals that the first three variables have a posterior probability of very close to one, the 4th variable has a small but non-negligible probability of inclusion, and the other variables all have very small probabilities of inclusion.

This is fine so far as it goes, but is not entirely satisfactory. One problem is that the choice of a “fixed effects” prior for the regression coefficients of the included variables is likely to lead to a Lindley’s paradox type situation, and a consequent under-selection of variables. It is arguably better to model the distribution of included variables using a “random effects” approach, leading to a more appropriate distribution for the included variables.

#### Variable selection with random effects

Adopting a random effects distribution for the included coefficients that is normal with mean zero and unknown variance helps to combat Lindley’s paradox, and can be implemented as follows.

data=list(y=y,X=X,n=n,p=p)
init=list(tau=1,taub=1,alpha=0,betaT=rep(0,p),ind=rep(0,p))
modelstring="
model {
for (i in 1:n) {
mean[i]<-alpha+inprod(X[i,],beta)
y[i]~dnorm(mean[i],tau)
}
for (j in 1:p) {
ind[j]~dbern(0.2)
betaT[j]~dnorm(0,taub)
beta[j]<-ind[j]*betaT[j]
}
alpha~dnorm(0,0.0001)
tau~dgamma(1,0.001)
taub~dgamma(1,0.001)
}
"
model=jags.model(textConnection(modelstring),
data=data,inits=init)
update(model,n.iter=1000)
output=coda.samples(model=model,
variable.names=c("alpha","beta","ind","tau","taub"),
n.iter=10000,thin=1)
print(summary(output))
plot(output)


This leads to a large inclusion probability for the 4th variable, and non-negligible inclusion probabilities for the next few (it is obviously somewhat dependent on the simulated data set). This random effects variable selection modelling approach generally performs better, but it still has the potentially undesirable feature of hard-coding the probability of variable inclusion. Under the prior model, the number of variables included is binomial, and the binomial distribution is rather concentrated about its mean. Where there is a general desire to control the degree of sparsity in the model, this is a good thing, but if there is considerable uncertainty about the degree of sparsity that is anticipated, then a more flexible model may be desirable.

#### Variable selection with random effects and a prior on the inclusion probability

The previous model can be modified by introducing a Beta prior for the model inclusion probability. This induces a distribution for the number of included variables which has longer tails than the binomial distribution, allowing the model to learn about the degree of sparsity.

data=list(y=y,X=X,n=n,p=p)
init=list(tau=1,taub=1,pind=0.5,alpha=0,betaT=rep(0,p),ind=rep(0,p))
modelstring="
model {
for (i in 1:n) {
mean[i]<-alpha+inprod(X[i,],beta)
y[i]~dnorm(mean[i],tau)
}
for (j in 1:p) {
ind[j]~dbern(pind)
betaT[j]~dnorm(0,taub)
beta[j]<-ind[j]*betaT[j]
}
alpha~dnorm(0,0.0001)
tau~dgamma(1,0.001)
taub~dgamma(1,0.001)
pind~dbeta(2,8)
}
"
model=jags.model(textConnection(modelstring),
data=data,inits=init)
update(model,n.iter=1000)
output=coda.samples(model=model,
variable.names=c("alpha","beta","ind","tau","taub","pind"),
n.iter=10000,thin=1)
print(summary(output))
plot(output)


It turns out that for this particular problem the posterior distribution is not very different to the previous case, as for this problem the hard-coded choice of 20% is quite consistent with the data. However, the variable inclusion probabilities can be rather sensitive to the choice of hard-coded proportion.

#### Conclusion

Bayesian variable selection (and model selection more generally) is a very delicate topic, and there is much more to say about it. In this post I’ve concentrated on the practicalities of introducing variable selection into JAGS models. For further reading, I highly recommend the review of O’Hara and Sillanpaa (2009), which discusses other computational algorithms for variable selection. I intend to discuss some of the other methods in future posts.

#### References

O’Hara, R. and Sillanpaa, M. (2009) A review of Bayesian variable selection methods: what, how and which. Bayesian Analysis, 4(1):85-118. [DOI, PDF, Supp, BUGS Code]
Kuo, L. and Mallick, B. (1998) Variable selection for regression models. Sankhya B, 60(1):65-81.

## Inlining JAGS models in R scripts for rjags

JAGS (Just Another Gibbs Sampler) is a general purpose MCMC engine similar to WinBUGS and OpenBUGS. I have a slight preference for JAGS as it is free and portable, works well on Linux, and interfaces well with R. It is tempting to write a tutorial introduction to JAGS and the corresponding R package, rjags, but there is a lot of material freely available on-line already, so it isn’t really necessary. If you are new to JAGS, I suggest starting with Getting Started with JAGS, rjags, and Bayesian Modelling. In this post I want to focus specifically on the problem of inlining JAGS models in R scripts as it can be very useful, and is usually skipped in introductory material.

#### JAGS and rjags on Ubuntu Linux

On recent versions of Ubuntu, assuming that R is already installed, the simplest way to install JAGS and rjags is using the command

sudo apt-get install jags r-cran-rjags


Now rjags is a CRAN package, so it can be installed in the usual way with install.packages("rjags"). However, taking JAGS and rjags direct from the Ubuntu repos should help to ensure that the versions of JAGS and rjags are in sync, which is a good thing.

#### Toy model

For this post, I will use a trivial toy example of inference for the mean and precision of a normal random sample. That is, we will assume data

$X_i \sim N(\mu,1/\tau),\quad i=1,2,\ldots n,$

with priors on $\mu$ and $\tau$ of the form

$\tau\sim Ga(a,b),\quad \mu \sim N(c,1/d).$

#### Separate model file

The usual way to fit this model in R using rjags is to first create a separate file containing the model

  model {
for (i in 1:n) {
x[i]~dnorm(mu,tau)
}
mu~dnorm(cc,d)
tau~dgamma(a,b)
}


Then, supposing that this file is called jags1.jags, an R session to fit the model could be constructed as follows:

require(rjags)
x=rnorm(15,25,2)
data=list(x=x,n=length(x))
hyper=list(a=3,b=11,cc=10,d=1/100)
init=list(mu=0,tau=1)
model=jags.model("jags1.jags",data=append(data,hyper), inits=init)
update(model,n.iter=100)
output=coda.samples(model=model,variable.names=c("mu", "tau"), n.iter=10000, thin=1)
print(summary(output))
plot(output)


This is all fine, and it can be very useful to have the model declared in a separate file, especially if the model is large and complex, and you might want to use it from outside R. However, very often for simple models it can be quite inconvenient to have the model separate from the R script which runs it. In particular, people often have issues with naming files correctly, making sure R is looking in the correct directory, moving the model with the R script, etc. So it would be nice to be able to just inline the JAGS model within an R script, to keep the model, the data, and the analysis all together in one place.

#### Using a temporary file

What we want to do is declare the JAGS model within a text string inside an R script and then somehow pass this into the call to jags.model(). The obvious way to do this is to write the string to a text file, and then pass the name of that text file into jags.model(). This works fine, but some care needs to be taken to make sure this works in a generic platform independent way. For example, you need to write to a file that you know doesn’t exist in a directory that is writable using a filename that is valid on the OS on which the script is being run. For this purpose R has an excellent little function called tempfile() which solves exactly this naming problem. It should always return the name of a file which does not exist in a writable directly within the standard temporary file location on the OS on which R is being run. This function is exceedingly useful for all kinds of things, but doesn’t seem to be very well known by newcomers to R. Using this we can construct a stand-alone R script to fit the model as follows:

require(rjags)
x=rnorm(15,25,2)
data=list(x=x,n=length(x))
hyper=list(a=3,b=11,cc=10,d=1/100)
init=list(mu=0,tau=1)
modelstring="
model {
for (i in 1:n) {
x[i]~dnorm(mu,tau)
}
mu~dnorm(cc,d)
tau~dgamma(a,b)
}
"
tmpf=tempfile()
tmps=file(tmpf,"w")
cat(modelstring,file=tmps)
close(tmps)
model=jags.model(tmpf,data=append(data,hyper), inits=init)
update(model,n.iter=100)
output=coda.samples(model=model,variable.names=c("mu", "tau"), n.iter=10000, thin=1)
print(summary(output))
plot(output)


Now, although there is a file containing the model temporarily involved, the script is stand-alone and portable.

#### Using a text connection

The solution above works fine, but still involves writing a file to disk and reading it back in again, which is a bit pointless in this case. We can solve this by using another under-appreciated R function, textConnection(). Many R functions which take a file as an argument will work fine if instead passed a textConnection object, and the rjags function jags.model() is no exception. Here, instead of writing the model string to disk, we can turn it into a textConnection object and then pass that directly into jags.model() without ever actually writing the model file to disk. This is faster, neater and cleaner. An R session which takes this approach is given below.

require(rjags)
x=rnorm(15,25,2)
data=list(x=x,n=length(x))
hyper=list(a=3,b=11,cc=10,d=1/100)
init=list(mu=0,tau=1)
modelstring="
model {
for (i in 1:n) {
x[i]~dnorm(mu,tau)
}
mu~dnorm(cc,d)
tau~dgamma(a,b)
}
"
model=jags.model(textConnection(modelstring), data=append(data,hyper), inits=init)
update(model,n.iter=100)
output=coda.samples(model=model,variable.names=c("mu", "tau"), n.iter=10000, thin=1)
print(summary(output))
plot(output)


This is my preferred way to use rjags. Note again that textConnection objects have many and varied uses and applications that have nothing to do with rjags.