Statistical computing with Scala free on-line course

I’ve recently delivered a three-day intensive short-course on Scala for statistical computing and data science. The course seemed to go well, and the experience has convinced me that Scala should be used a lot more by statisticians and data scientists for a range of problems in statistical computing. In particular, the simplicity of writing fast efficient parallel algorithms is reason alone to take a careful look at Scala. With a view to helping more statisticians get to grips with Scala, I’ve decided to freely release all of the essential materials associated with the course: the course notes (as PDF), code fragments, complete examples, end-of-chapter exercises, etc. Although I developed the materials with the training course in mind, the course notes are reasonably self-contained, making the course quite suitable for self-study. At some point I will probably flesh out the notes into a proper book, but that will probably take me a little while.

I’ve written a brief self-study guide to point people in the right direction. For people studying the material in their spare time, the course is probably best done over nine weeks (one chapter per week), and this will then cover material at a similar rate to a typical MOOC.

The nine chapters are:

1. Introduction
2. Scala and FP Basics
3. Collections
4. Scala Breeze
5. Monte Carlo
6. Statistical modelling
7. Tools
8. Apache Spark
9. Advanced topics

For anyone frustrated by the limitations of dynamic languages such as R, Python or Octave, this course should provide a good pathway to an altogether more sophisticated, modern programming paradigm.

Calling R from Scala sbt projects using rscala


In the previous post I showed how the rscala package (which has replaced the jvmr package) can be used to call Scala code from within R. In this post I will show how to call R from Scala code. I have previously described how to do this using jvmr. This post is really just an update to show how things work with rscala.

Since I’m focusing here on Scala sbt projects, I’m assuming that sbt is installed, in addition to rscala (described in the previous post). The only “trick” required for calling back to R from Scala is telling sbt where the rscala jar file is located. You can find the location from the R console as illustrated by the following session:

> library(rscala)
> rscala::rscalaJar("2.11")
[1] "/home/ndjw1/R/x86_64-pc-linux-gnu-library/3.2/rscala/java/rscala_2.11-1.0.6.jar"

This location (which will obviously be different for you) can then be added in to your sbt classpath by adding the following line to your build.sbt file:

unmanagedJars in Compile += file("/home/ndjw1/R/x86_64-pc-linux-gnu-library/3.2/rscala/java/rscala_2.11-1.0.6.jar")

Once this is done, calling out to R from your Scala sbt project can be carried out as described in the rscala documentation. For completeness, a working example is given below.


In this example I will use Scala to simulate some data consistent with a Poisson regression model, and then push the data to R to fit it using the R function glm(), and then pull back the fitted regression coefficients into Scala. This is obviously a very artificial example, but the point is to show how it is possible to call back to R for some statistical procedure that may be “missing” from Scala.

The dependencies for this project are described in the file build.sbt

name := "rscala test"

version := "0.1"

scalacOptions ++= Seq("-unchecked", "-deprecation", "-feature")

libraryDependencies  ++= Seq(
            "org.scalanlp" %% "breeze" % "0.10",
            "org.scalanlp" %% "breeze-natives" % "0.10"

resolvers ++= Seq(
            "Sonatype Snapshots" at "",
            "Sonatype Releases" at ""

unmanagedJars in Compile += file("/home/ndjw1/R/x86_64-pc-linux-gnu-library/3.2/rscala/java/rscala_2.11-1.0.6.jar")

scalaVersion := "2.11.6"

The complete Scala program is contained in the file PoisReg.scala

import org.ddahl.rscala.callback._
import breeze.stats.distributions._
import breeze.linalg._

object ScalaToRTest {

  def main(args: Array[String]) = {

    // first simulate some data consistent with a Poisson regression model
    val x = Uniform(50,60).sample(1000)
    val eta = x map { xi => (xi * 0.1) - 3 }
    val mu = eta map { math.exp(_) }
    val y = mu map { Poisson(_).draw }
    // call to R to fit the Poission regression model
    val R = RClient() // initialise an R interpreter
    R.x=x.toArray // send x to R
    R.y=y.toArray // send y to R
    R.eval("mod <- glm(y~x,family=poisson())") // fit the model in R
    // pull the fitted coefficents back into scala
    val beta = DenseVector[Double](R.evalD1("mod$coefficients"))

    // print the fitted coefficents



If these two files are put in an empty directory, the code can be compiled and run by typing sbt run from the command prompt in the relevant directory. The commented code should be self-explanatory, but see the rscala documentation for further details. In particular, the rscala scaladoc is useful.